
Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 1

Embedded systems
From Wikipedia: An embedded system is a computer system—a
combination of a computer processor, computer memory, and input/
output peripheral devices—that has a dedicated function within a larger
mechanical or electronic system. Embedded systems control many
devices in common use today. Ninety-eight percent of all
microprocessors are manufactured components of embedded systems.

• Limited computation power
and memory

• Low power

• Small size

• Rugged operating range

• Low cost

• cell phones

• smart watches

• appliances

• automotive / avionics

• cameras and photography

• HVAC systems

• factory automation

• Internet of Things (IoT)

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 2

Analog vs. Digital
A key concept in beginning to design and use microcontrollers in
embedded systems is understanding the difference between analog and
digital signals.

Analog - a continuously varying energy or quantity of material. Much of
how we interact with the surrounding physical world is analog in nature
– sound, sight, smell, taste. We use sensors to convert physical analog
quantities to analog voltages or currents. (Microphones, photosensors,
temperature sensors, etc.) Just like the physical quantity, the voltage or
current is defined at every point in time. Detecting an analog voltage or
current requires requires precisely measuring the volts or amps at a
particular time. A simple example of an analog signal is a sine wave.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 3

Digital - The signal is either high or low (on/off or true/false or 0 /1).
There are not many digital signals in the physical world. However, in
terms of encoding information into signals, digital is much more robust.
There is more leeway in interpreting whether a voltage is high or low.
“High” means simply being “high enough” — above some threshold
level. “Low” means simply being “low enough” — below some
threshold level. Interpreting the information from a digital signal is less
susceptible to errors because the voltages don’t have to be known
precisely.

The systems that we have developed to collect, manipulate, and
transmit information work best by collecting the analog information
from the surrounding physical environment, converting it digital form,
processing the information digitally, and then converting back to analog
(if needed).

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 4

Data Converters
In embedded systems, there is a constant need to transform information
between analog and digital forms.

A sensor may be measuring some analog signal in the real world. For
example, a temperature sensor would produce an analog voltage (or
current) that is somehow proportional to the temperature in some
system. An analog-to-digital converter (ADC) is needed to turn the
temperature-dependent voltage into a digital number that can be used
by the processor of the microcontroller.

All microcontrollers have built-in ADCs to facilitate measurement of
real-world signals. These can be viewed as little voltmeters.

Sometimes, it may be necessary to convert digital information into an
analog signal. (e.g. generating sounds.) This requires a digital-to-analog
converter (DAC) circuit. Digital-to-analog conversion is less common in
embedded systems. Having built-in DACs is more of an optional feature
— some microcontrollers have them, some do not.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 5

Microcontroller
A microcontroller is a one-chip computer. In a single package, it has the
computing core and memory (of various types) needed to store and run small
programs. There will be connections for power, clock control, digital I/O,
analog in and maybe analog out.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 6

Microcontroller
Microcontroller packages can have as few as 8 pins to as many 144 pins (or
more). The basic pin functions can be broken into 3 categories.

Digital input/output
• Most of the pins of a microcontroller are digital I/O.

• These produce or detect “high” or “low” voltages that are interpreted as
digital bits. The low, or logic 0, is usually close to ground (0 V) and high,
or logic 1, is close to the power supply voltage (typically 3.3 V or 5 V).

• Digital pins can be configured as “input” to determine the logic level of
voltage applied to the pin.

• Or they can be configured as “output” to produce a logic voltage on the
pin to be applied to an external component.

• Digital pins can also be used to produce a pulse-width modulated (PWM)
signal.

• If needed, the pin configuration can be changed as the program runs.

• Two pins can be used to set a serial communications channel. Multiple
pins can be used to form a parallel channel.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 7

Microcontroller
Analog input / (output):

• These measure then voltage of a component attached to the input. Each is an
ADC, converting an analog voltage to a digital number.

• The input voltage must be between 0 V (ground) and the power-supply voltage
(typically 3.3 V or 5 V). If the sensor produces voltages outside this range, some
sort of intermediate voltage-shaping circuit would be needed to constrain the
voltages applied to the input.

• If the sensor voltage is small — much more typical — then an amplifier may be
needed in order to boost the voltage in order for the ADC to obtain an accurate
reading.

• ADC resolution is determine by the number of bits in the digital number that is
produced — 8, 10, 12, 14 bit ADCs are common in microcontrollers. For
example, ATMega328 uses 10-bit ADCs, so the largest digital number is
1111111111 = 1023. If the voltage range is 5 V, then the resolution is 5 V ÷
1023 = 4.9 mV.

• Generally, microcontrollers will have a “handful” of analog input pins.
(ATMega328 has 6.)

• There may also be analog outputs, which require a DAC circuit. Analog output is
often not essential, so not all microcontrollers included them.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 8

Microcontroller
Power and clock pins:

• DC power and ground connections are essential. A larger chip may have
multiple, redundant power and ground pins. Common power supply
voltages are: 5 V, 3.3 V, 1.8 V.

• All computer systems need a clock signal in order to function.

• Most microcontroller have the option of generating a clock signal without
external components.

• Larger chips probably have two pins available for connecting an external
clock oscillator crystal. Using an external crystal will create a more
accurate — and probably faster — clock signal. External crystals are fairly
standard components with microcontrollers.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 9

Sensors
A key part of many embedded systems is measuring the surrounding
environment. Sensors provide this type of input. There are many
different kinds of sensors for measuring:

• voltage, current

• temperature (electronic, thermocouple, thermistor)

• humidity / pressure

• sound (microphone)

• light (photoresistor, photodiode, bolometer)

• distance (sonar, radar, lidar)

• mechanical motion (accelerometer, gyroscope)

• magnetic fields (coil, Hall-effect)

• chemical

• RFID tags

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 10

A bit of history
• Microchip was the original microcontroller company. The first

controller was the PIC1650 in 1976. The company at that time was
called General Instruments. Microchip was spun out as a separate
company in the late 1980s. PIC originally stood for Peripheral
Instrumentation Controller. Microchip sells more than 1 billion
microcontrollers every year.

• Atmel was founded in 1984, specifically to compete in the
microcontroller market. One of their major product line is the AVR
family of controllers. Atmel gained lots of followers because it’s chips
were used in Arduino. Recently, Atmel was bought by Microchip.

• ARM is separate microcontroller architecture owned by ARM
Holdings (from Great Britain) that is licensed by many companies. It
is used in all smartphones and finds increasing use elsewhere.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 11

Microcontroller manufacturers by market share - 2021

source: https://www.statista.com/statistics/1327509/top-mcu-suppliers-worldwide/

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 12

Microcontroller consideration
There are literally hundreds of microcontrollers available from the
various companies. Things to consider when choosing.

• Price

• Architecture — 8-, 16-, 32, 64-bit

• Clock frequency — internal or with external oscillator crystal

• Memory — flash, static RAM

• Digital I/O pins

• Analog input — number of bits in ADC output

• PWM channels

• Package size and type

• Power requirements

• Analog output (optional)

• Built-in communications protocols

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 13

Atmega328
• Developed by Atmel. (Later acquired by Microchip)

• Used in Arduino Uno R3 (classic)

• 8-bit AVR architecture

• 8 – 20 MHz clock frequency (16 MHz is typical)

• 32 kbytes of flash memory (program storage)

• 2 kbytes of static memory

• 28-pin or 32-pin package

• 14 digital I/O

• 6 analog input (no analog out)

• 6 PWM outputs (part of the 14 digital I/0)

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 14

Pin assignment for Atmega328
28-pin through-
hole packagePin data

sheet Arduino function

1 PC6 Reset Reset

2 PD0 digital 0 RX

3 PD1 digital 1 TX

4 PD2 digital 2

5 PD3 digital 3 also PWM

6 PD4 digital 4

7 VCC VCC power

8 GND GND ground

9 PB6 crystal oscillator

10 PB7 crystal oscillator

11 PD5 digital 5 also PWM

12 PD6 digital 6 also PWM

13 PD7 digital 7

14 PB0 digital 8

1
2
3
4 25
5 24
6 23
7 22
8 21
9 20

10 19
11 18
12 17
13 16
14 15

26
27
28

Pin data
sheet Arduino function

15 PB1 digital 9 also PWM

16 PB2 digital 10 also PWM

17 PB3 digital 11 MOSI, PWM

18 PB4 digital 12 MISO

19 PB5 digital 13 SCK

20 AVCC VDD power

21 AREF analog ref

22 GND GND ground

23 PC0 analog 0 ADC 0

24 PC1 analog 1 ADC 1

25 PC2 analog 2 ADC 2

26 PC3 analog 3 ADC 3

27 PC4 analog 4 ADC 4

28 PC5 analog 5 ADC 5

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 15

Developing embedded systems
Developing an embedded systems requires:

1. Hardware design. This includes the microcontroller, of course, along with
any sensors, amplifiers, switches, displays, etc. Also requires design of the
power system.

2. Software design. This code will run on the microcontroller and
implement the desired system functionality. Usually written on a regular
computer and then transferred to the microcontroller.

To facilitate embedded development, microcontroller vendors will provide:

1. A hardware prototyping kit. This includes the microcontroller, power
supply and connectors for easy connection to external portions of the
hardware design.

2. A software Integrated Development Environment (IDE). Runs on a
Windows, Mac, or Linux computer. Provides for compiling, error
checking, and a channel to transfer completed code to the
microcontroller.

These development tools can be expensive to purchase and might be difficult
to use. Definitely intended for professional engineers. Students and hobbyists
need not apply.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 16

Enter Arduino
In 2005, a group at the Interactive Design Institute Ivrea in Ivrea, Italy
put together a hardware / software platform that would make it much
easier to build embedded systems prototypes. (The titular leader of the
group was — and still is — Massimo Banzi, although there were four
other founders.) They named the platform Arduino, after a bar that they
frequented. They were focusing on making a system on which students
and hobbyists could learn easily and would be affordable to non-
professionals. Their efforts unleashed the current “maker” movement.

There have been several iterations on the basic platform over the years.
For several years, the standard hardware arrangement is the Arduino
Uno R3. (That may be about to change.)

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 17

Arduino Uno hardware

Atmega 328
(socketed)power (9 V

battery + 5 V
regulator)

oscillator
crystal

I/O connectors

I/O connectors

USB

reset

blinky
LEDs

ICSP

17

3.3-V
regulator

Also power and ground connections.
Can power 5-V and 3.3-V peripherals.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 18

Hardware expansion through “shields”

Ethernet WiFi Bluetooth

Touch display Motor

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 19

Arduino Uno software
• The IDE for the Arduino is a Java application (runs identically on Windows /

Mac / Linux).

• The programs (called sketches) are written in a subset of C. There are some
special commands for defining the operation of I/O and for receiving/
sending information to those pins.

• There is a USB interface to facilitate transferring programs from the IDE on
the computer to the controller. (No hardware dongle!) The USB interface
also conveniently provides power when connected to a computer.

• There is an interface, called the serial monitor, that is analogous to the C
console to interact with the controller as the code runs. It is rather crude.

• Note: The controller is meant to operate in a stand-alone mode. It is not
intended to be tethered to the host computer indefinitely. But when
developing the software, it is important to be able to “see” what is
happening with the program.

• Everything is open-source, Including the hardware design.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 20

What is needed to get started?
An Arduino Uno R3 board ~ $27

Get it directly from Arduino
(https://arduino.cc). Or from
many familiar vendors: Amazon,
Digikey, Mouser, Newark,
Adafruit, Jameco.

(Beware of knock-offs.)

USB - A to B cable
(Standard printer connection.)

Download and install the Arduino IDE

https://www.arduino.cc/en/Main/Software (Currently at ver. 2.2.1.)

https://arduino.cc
https://www.arduino.cc/en/Main/Software

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 21

Structure of an Arduino program
An Arduino program (known as a “sketch”) is slightly different from a
typical C program. There is no main function. Instead there are two
separate functions — one called setup() and a second called loop().
Setup runs once at the beginning of execution and then loop() starts and
runs in a continuous loop.

• The setup function behaves just like a regular C program. Program
flow starts at the top and progresses through to the last line. (If there
are any loops with setup, they behave according to the conditionals
like we would expect.) As the name implies, the purpose of setup is
to define variables, set the function of the pins, and take care of any
preliminary housekeeping. When setup() is complete, program flow
passes to loop().

• The program continues with the first line of the loop and then
progresses through to the last line. Then, as the name implies, the
program goes back to the first line of loop and runs again. And again
and again. Forever. (Or until the power is removed.) It is as if there
is an implied while loop whose conditional is always true.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 22

Getting started with a simple sketch
1. Download the Arduino IDE and install it on your computer.

2. Connect the Arduino board to your computer with the USB cable.

3. Launch Arduino IDE. A blank program template window appears.
Empty versions of the two basic functions are in place. A line at the
bottom of the window indicates that the board is not yet connected.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 23

4. From the drop-down menu at the top of the window, choose “Arduino
Uno”. “/dev/cu.usbmodemxxxx” indicates that the connection will be
made through the USB port. (This is USB name for a Mac connection
— the number may be different on different computers. A Windows
computer may have a COM port.) The board and port selection can
also be done using the “Tools” menu.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 24

5. After making the board selection, the status line at the bottom of the
window indicates that an Arduino Uno is connected via the USB port.
We are ready to roll.

If the message still indicates that no board is connected, check the USB
connection and trying selecting the board and port using the Tools menu.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 25

6. A good way to start is to use some of the built-in programs. My
favorite first program is “Blink” which simply blinks an LED on and
off. It’s very simple and has all the basics of an Arduino sketch.
From the file menu, select File→Examples→01.Basics→Blink. A new
window opens with the Blink sketch.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 26

6. There are many lines of comments. We should read through those.
But to simplify presentation here, we show the sketch with most of
the comments removed.

7. In the setup function, there is only one line:
pinMode(LED_BUILTIN, OUTPUT);

LED_BUILTIN is a pre-defined constant equal to 13. On the board,
there is dedicated LED connected to digital pin 13. The pinMode
command sets pin 13 to be a digital output.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 27

8. In the loop function, there are two different commands.

digitalWrite(LED_BUILTIN, HIGH) sets the output of the
LED_BUILTIN digital pin (#13) to the high state, meaning 5 V. This
will turn the LED on. digitalWrite(LED_BUILTIN, LOW) sets the
output of pin 13 to the low state, meaning 0 V. The LED turns off.

delay(1000) means to do nothing for 1000 ms (= 1 s). The controller
go into a time-killing while loop for the prescribed time.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 28

8. The loop sequence has the following actions:
Turn on the LED
Wait 1 second
Turn off the LED
Wait 1 second
Repeat ad infinitum.

That’s it — the LED blinks.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 29

9. Upload the sketch to the Arduino by clicking the right-arrow button at
the top left of the window. It takes a couple of seconds to upload. The
lower portion of the sketch window changes to display some
commentary relating to the transfer of the program. If there were any
errors in the compiling or transferring the code, those will be reported
here. We also see some LEDs on the board blink as the code is
transferred.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 30

9. As soon as the code is completely transferred, the program will begin
running on the board. There is a small yellow LED off to one side that
will start blinking — 1 second on, 1 second off. That’s the entirety of
the exercise.

Gary Tuttle — Arduino Club — 2023 Intro to Arduino – 31

10. Play around with program by making some changes:
- Substitute the number 13 for BUILTIN_LED in each line
- Change the on and off times.
- Add more lines to change the blink pattern.
- Connect an external LED/limiting resistor combination to pin 13
 so that two LEDs will blink.
- Connect the external LED/resistor combination to other digital pins
 and make the corresponding changes the code.
- Connect more LEDs and make fancy flashing patterns.

Note that after each change, the program will have to be uploaded
again from the computer to the Arduino board.

With five minutes of playing around, we will understand everything
about this simple program and a lot about how Arduino sketches
work in general.

We are off to a good start towards learning about embedded
systems, but there are many more fun things to learn.

