Analog input

- The Arduino's ATmega328 has 6 analog-to-digital (ADC) inputs, labeled A0 – A5. Each is essentially a voltmeter. The ADCs convert the voltages to numbers.
- The allowed voltage range is 0 V (ground) up to a specified voltage reference. The default voltage reference is the power supply, so the typical range is 0 V 5 V.
- To get a voltage reading: x = analogRead(pin), where pin is the specific analog input and x is and integer. There is no mode command for the analog inputs. The pin can designated simply as a number (0 5) or the "A" can be prepended (A0 A5).
- The analog pins can also be used as digital inputs, for applications that needs lots of digital pins.
- As always, for further details, check the Arduino language reference.

Example

```
//Read the level of voltage of a sensor connected to
//analog pin 4. If it is higher than 3.5 V, turn on a
//warning LED connected to digital pin 6.
```

```
int sensorPin = A4; //Note, the "A" is optional.
int ledPin = 6;
int x;
float voltage;
```

```
void setup()
```

{

}

{

```
pinmode( ledPin, OUTPUT );
```

```
void repeat()
```

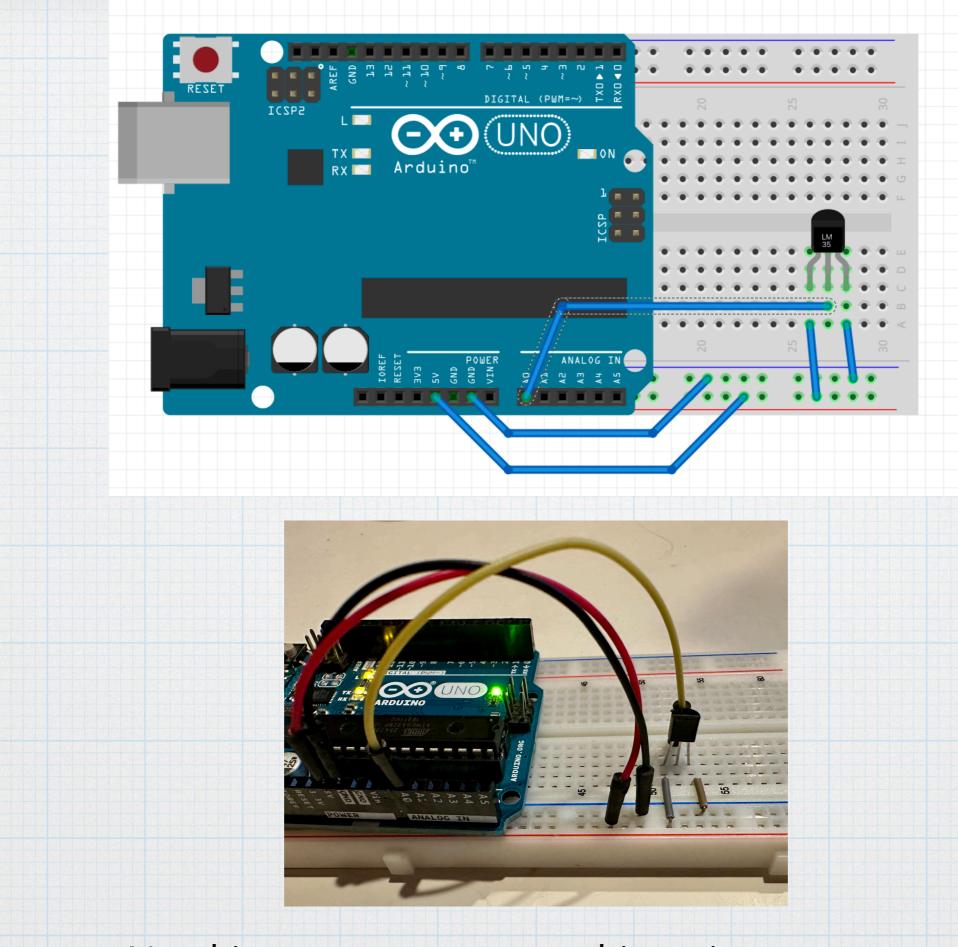
```
x = analogRead( sensorPin );
voltage = 5.0/1023.0*x; //Convert number to volts
if (voltage >= 3.5 )
    digitalWrite( ledPin, HIGH);
else
    digitalWrite( ledPin, LOW );
delay( 1000 );
```

Analog accuracy

- The ADCs in the Atmega328 are 10-bit, giving 2¹⁰ = 1024 voltage steps. An input of 0 V will correspond to "0" and "1023" will correspond to the maximum voltage (= reference voltage).
- An input voltage bigger than the reference will be "clipped" at 1023. Anything less than 0 V will be clipped at 0.
- With a 5-V reference, the resolution is (5 V)/1023 = 4.9 mV not terribly precise but possibly good enough for many applications.
- The default reference is the power supply either 5.0 V or 3.3 V.
- The measured voltage is only as accurate as the reference. Power supply voltages either USB or using a voltage regulator can easily vary by ±0.2 V (about 5%). Then measured analog voltage will be off by a similar amount.

Accuracy and speed


- There is a 1.10-V internal reference that can be used. This will give better resolution, (1.1 V)/1023 ≈ 1.1 mV, which might be advantageous when measuring small voltages from sensors, etc. However, the variance the internal reference it is about ±10%, so that is a disadvantage.
- It is possible to use attach a more accurate external reference. This would be attached to the AREF pin of the Atmega chip. An external reference could provide better accuracy and resolution.
- To use the internal reference, include the command analogReference(INTERNAL) in the setup function. For an external reference use analogReference(EXTERNAL) – and don't forget to attach the external reference voltage.
- The analog read time is about 100 microseconds, corresponding to a sample rate of 10 kHz not terribly fast. Applying Nyquist, the highest frequency that could be reasonably sampled would be 5 kHz. This might be good enough for speech, but it is not inadequate for high fidelity audio.


Sensor example: LM35 temperature sensor

One of the most important uses for the analog inputs is in reading sensor voltages. There are *many* types of sensors that can be used with Arduino. (We will cover some in a later discussion.)

- One simple type of temperature sensor is the LM35 from Texas Instruments.
- 3 terminals: V_{CC}, ground, and v_{out}.
- 4 V < V_{CC} < 30 V, so works nicely with Arduino power supply.
- $v_{out} = (10 \text{ mV/}^{\circ}\text{C}) \cdot T$
- Room temp: $\approx 70^{\circ}\text{F} = 21.1^{\circ}\text{C} \rightarrow v_{out} = 210 \text{ mV}.$
- Can measure below freezing if a negative supply is used as well.
- Data sheet:

https://www.ti.com/lit/ds/symlink/lm35.pdf

Use this setup to measure ambient air temperature.

Arduino Club 2023

Analog input - 6

LM35, first iteration

- Connect LM35 power and ground to Arduino. Use analog input 0 to read the sensor voltage.
- Use default $V_{CC} = 5$ V reference.
- Use serial monitor to display measurements.

ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F. ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F . ADC value = 41, voltage = 0.20 V, T = 20.04°C = 68.07°F . ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F . ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F. ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F . ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F. ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F. ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F . ADC value = 43, voltage = 0.21 V, T = 21.02°C = 69.83°F. ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F. ADC value = 44, voltage = 0.22 V, T = 21.51°C = 70.71°F. ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F. ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F . ADC value = 43, voltage = 0.21 V, T = 21.02°C = 69.83°F . ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F . ADC value = 43, voltage = 0.21 V, T = 21.02°C = 69.83°F. ADC value = 42, voltage = 0.21 V, T = 20.53°C = 68.95°F. ADC value = 43, voltage = 0.21 V, T = 21.02°C = 69.83°F.

thermometer_1.ino

```
//LM 35 Thermometer, round 1
1
2
     int tempPin = 0;
                             //ADC input
     int analogValue;
                             //variable for ADC value
3
     float vRef = 5.0;
4
                             //Reference voltage
5
     float voltage;
                             //Voltage calculate from ADC value
     float tempC, tempF;
                             //Calculated temps
6
     int loopTime = 1000;
7
                             //Loop time = 1 sec
8
9
     void setup()
10
       Serial.begin( 9600 );
                                  //For serial monitor
11
12
     }
13
     void loop()
14
15
     {
       analogValue = analogRead( tempPin ); //Read ADC
16
17
       voltage = vRef*analogValue/1023.0;
                                              //Convert to volts
18
       tempC = voltage/0.01;
                                              //Convert to Celsius
       tempF = 1.8 * tempC + 32;
19
                                              //Convert to Fahrenheit
20
       Serial.print( "ADC value = ");
21
22
       Serial.print( analogValue );
       Serial.print( ", voltage = ");
23
       Serial.print( voltage );
24
25
       Serial.print( " V, T = " );
26
       Serial.print( tempC );
27
       Serial.print( u8"\u00B0" );
                                          //For the degree symbol.
       Serial.print( "C = " );
28
       Serial.print( tempF );
29
       Serial.print( u8"\u00B0" );
30
       Serial.print( "F.\n" );
31
32
33
       delay( loopTime );
34
```

Seems easy enough.

LM35, first iteration

- In looking at the results of the first iteration, we note that the ADC is working at the very low end of the potential range. The values are around ≈ 42 out of 1023.
- With the 5-V reference, the voltage resolution is 4.9 mV, which corresponds to a temp resolution of about 0.5°C (0.9°F). Maybe we could better.
- From the snippet of results displayed (about 20 seconds worth), we see the range of values is $\Delta T = 1.5^{\circ}C = 2.6^{\circ}F$. Seems like a lot for a quantity that really should not change much in such a short time.
- Temperature measured with a separate, calibrated thermometer was 71.0°F, so the LM 35 + Arduino temp seems a bit low.
- Reference voltage measured at the AREF pin was 5.08 V, a bit higher than expected.
- Might be able to improve resolution by using the internal reference. Add the line analogReference(INTERNAL); to the setup function.

LM35, second iteration – change reference voltage

- Switch to the internal reference Add command in setup function.
- Reference should be 1.1 V.
 Measured value was 1.077 V close.
- Results are closer to the calibration, with less variance,
 ΔT = 0.6°C = 1.1°F.

```
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 208, voltage = 0.224 V, T = 22.4°C = 72.3°F.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 204, voltage = 0.219 V, T = 21.9°C = 71.5°F.
ADC value = 204, voltage = 0.219 V, T = 21.9°C = 71.5°F.
ADC value = 206, voltage = 0.222 V, T = 22.2°C = 71.9°F.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 204, voltage = 0.219 \text{ V}, T = 21.9^{\circ}\text{C} = 71.5^{\circ}\text{F}.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 204, voltage = 0.219 V, T = 21.9°C = 71.5°F.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 205, voltage = 0.220 \text{ V}, T = 22.0^{\circ}\text{C} = 71.7^{\circ}\text{F}.
ADC value = 205, voltage = 0.220 V, T = 22.0°C = 71.7°F.
```

thermometer_2.ino

35

}

	-						
1	//LM 35 Thermometer, round 2						
2	t tempPin = 0; //ADC input						
3	<pre>int analogValue; //variable for ADC value</pre>						
4	<pre>float vRef = 1.1; //Internal reference voltage</pre>						
5	<pre>float voltage; //Voltage calculate from ADC value</pre>						
6	<pre>float tempC, tempF; //Calculated temps</pre>						
7	<pre>int loopTime = 1000; //Loop time = 1 sec</pre>						
8							
9	<pre>void setup()</pre>						
10	{						
11	Serial.begin(9600); //For serial monitor						
12	<pre>analogReference(INTERNAL); //Use internal reference</pre>						
13	}						
14							
15	<pre>void loop()</pre>						
16	{						
17	<pre>analogValue = analogRead(tempPin); //Read ADC</pre>						
18	<pre>voltage = vRef*analogValue/1023.0; //Convert to volts</pre>						
19	<pre>tempC = voltage/0.01; //Convert to Celsius</pre>						
20	<pre>tempF = 1.8*tempC + 32; //Convert to Fahrenheit</pre>						
21							
22	<pre>Serial.print("ADC value = ");</pre>						
23	<pre>Serial.print(analogValue);</pre>						
24	<pre>Serial.print(", voltage = ");</pre>						
25	<pre>Serial.print(voltage,3);</pre>						
26	<pre>Serial.print(" V, T = ");</pre>						
27	<pre>Serial.print(tempC, 1);</pre>						
28	<pre>Serial.print(u8"\u00B0"); //For the degree symbol.</pre>						
29	<pre>Serial.print("C = ");</pre>						
30	<pre>Serial.print(tempF, 1);</pre>						
31	<pre>Serial.print(u8"\u00B0");</pre>						
32	<pre>Serial.print("F.\n");</pre>						
33							
34	<pre>delay(loopTime);</pre>						

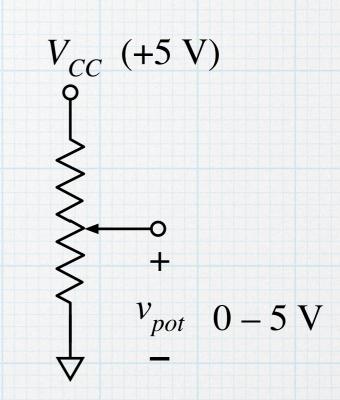
```
Arduino Club 2023
```

LM35, third iteration – include averaging

- To improve accuracy further, use averaging. Make several measurements over a time interval and calculate the average value of those measurements.
- Works like a low-pass filter to reduce "high-frequency" variations.
- For example, measure 10 times in 1 sec (0.1 sec between measurements.
- Serial monitor results below. Code is on the next slide.
- Individual ADC values still vary somewhat. But, with averaging, the temps are much more steady $\Delta T = 0.1^{\circ}C \approx 0.2^{\circ}F$.

ADC values: 204, 203, 204, 203, 204, 204, 204, 204, 203, 203. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 204, 204, 203, 204, 203, 204, 204, 204, 203, 204. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 204, 204, 204, 204, 203, 203, 203, 204, 203, 205. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 203, 203, 203, 204, 203, 204, 204, 204, 204, 204, 204. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 204, 203, 204, 204, 203, 204, 204, 204, 204, 204, 203. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 203, 204, 203, 203, 204, 204, 203, 203, 204, 203. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 204, 203, 204, 204, 203, 203, 203, 203, 204, 204. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 203, 203, 204, 204, 203, 205, 204, 204, 203, 204. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 203, 204, 203, 203, 203, 204, 204, 203, 203, 203, 203. Voltage = 0.219 V, T = 21.9°C = 71.3°F. ADC values: 204, 203, 203, 203, 203, 203, 204, 203, 204, 204, 204. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 204, 204, 203, 204, 203, 203, 204, 203, 204, 203. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 203, 203, 203, 204, 203, 204, 203, 203, 203, 203, 203. Voltage = 0.218 V, T = 21.8°C = 71.3°F. ADC values: 204, 203, 204, 204, 203, 204, 203, 203, 203, 203. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 203, 203, 203, 203, 202, 204, 204, 204, 203, 204. Voltage = 0.219 V, T = 21.9°C = 71.3°F. ADC values: 204, 204, 203, 204, 204, 203, 204, 204, 204, 204, 204. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 203, 203, 204, 204, 203, 203, 203, 203, 203, 203, 204. Voltage = 0.219 V, T = 21.9°C = 71.3°F. ADC values: 203, 204, 203, 203, 204, 203, 204, 204, 204, 203, 203. Voltage = 0.219 V, T = 21.9°C = 71.4°F. ADC values: 204, 203, 203, 204, 203, 203, 203, 203, 203, 203, 203. Voltage = 0.218 V, T = 21.8°C = 71.3°F. ADC values: 203, 204, 203, 204, 203, 204, 203, 203, 203, 203. Voltage = 0.219 V, T = 21.9°C = 71.3°F.

```
thermometer_3.ino
       //LM 35 Thermometer, round 3, using averaging
   1
   2
        int i;
                             //counting integer
   3
        int tempPin = 0;
                            //ADC input
   4
        int analogValue;
                            //The ADC reading
   5
       float vRef = 1.1; //Internal reference voltage
   6
        float voltage;
                             //Voltage calculated from ADC reading
   7
        float tempC, tempF; //Calculated temps.
   8
        int avgNum = 10;
                             //Average 10 measurements.
   9
        int avgTime = 100; //Measurements separated by 100 ms.
  10
  11
        void setup()
  12
        {
  13
          Serial.begin( 9600 );
                                        //For serial monitor
          analogReference( INTERNAL ); //Use internal reference again
  14
  15
        }
  16
  17
        void loop()
  18
        {
  19
          voltage = 0;
                                                  //Set voltage to 0 for each loop
          Serial.print( "ADC values: ");
  20
  21
          for( i = 0; i < avgNum; i++ )</pre>
  22
          {
  23
            analogValue = analogRead( tempPin ); //Read ADC
            Serial.print( analogValue );
  24
  25
            if( i == avgNum-1 )
                                                  //Nonsense to print nicely.
             Serial.print( ". ");
  26
  27
            else
  28
              Serial.print( ", ");
  29
            voltage = voltage + vRef*analogValue/1023.0;
                                                           //Accumulate the voltages
  30
            delay( avgTime );
                                                            //Delay until next measurement
  31
  32
          voltage = voltage/avgNum;
                                                  //divide to get averaged value
  33
  34
          tempC = voltage/0.01;
                                                 //Convert to Celsius
  35
          tempF = 1.8*tempC + 32;
                                                 //Convert to Fahrenheit
  36
  37
          Serial.print( "Voltage = ");
          Serial.print( voltage, 3 );
  38
          Serial.print( " V, T = " );
  39
  40
          Serial.print( tempC, 1 );
  41
          Serial.print( u8"\u00B0" );
                                            //For the degree symbol.
  42
          Serial.print( "C = " );
  43
          Serial.print( tempF, 1 );
  44
          Serial.print( u8"\u00B0" );
  45
          Serial.print( "F.\n" );
  46
        l
```


Moral of story:

- Using analog inputs is easy.
- Be mindful of voltage limits.
- Use a smaller reference voltage to improve resolution. But this also reduces the maximum range of voltages that can be measured.
- Use averaging to reduce random fluctuations. (Noise.)

A potentiometer as a variable input

A potentiometer is a simple way to adjust parameters in a system. The potentiometer can swing from 0 to "full scale", and the voltage can read at one of the analog inputs.

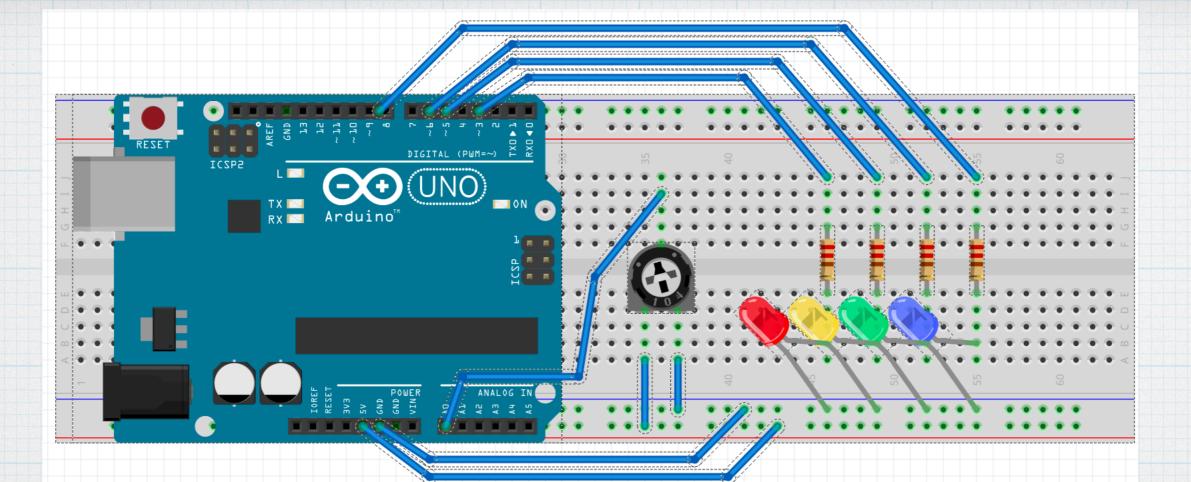
The value of the potentiometer is not important — $10 \text{ k}\Omega$ or $100 \text{ k}\Omega$ is fine.

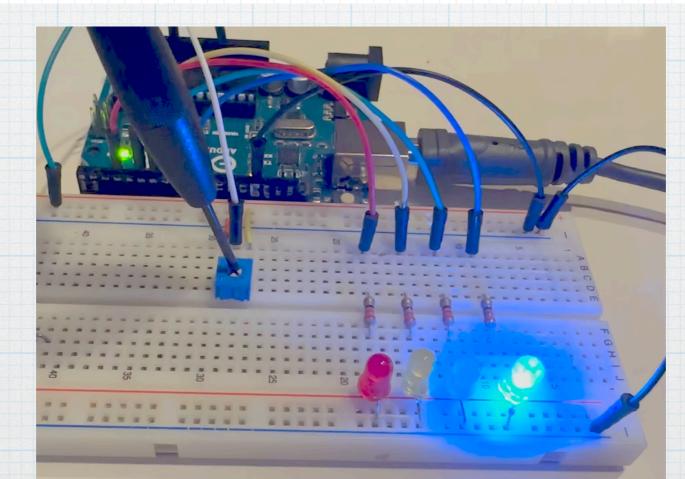
As a simple test, connect the outer leads of a potentiometer to the power supply and ground and the connect to the wiper to to analog input A0. Adjust the potentiometer and print the readings.

Potentiometer test

potentiometer test.ino

otentiometer_test.ino		The	analog	reading	is:	0. The voltage is 0.000 V.
1	//Simple potentiometer test	The	analog	reading	is:	65. The voltage is 0.318 V.
2	int x;	The	analog	reading	is:	181. The voltage is 0.885 V.
3	float v;	The	analog	reading	is:	287. The voltage is 1.403 V.
4		The	analog	reading	is:	413. The voltage is 2.019 V.
5	<pre>void setup()</pre>	The	analog	reading	is:	517. The voltage is 2.527 V.
6	{	The	analog	reading	is:	597. The voltage is 2.918 V.
7	Serial.begin(9600);	The	analog	reading	is:	693. The voltage is 3.387 V.
8	}		-	-		777. The voltage is 3.798 V.
9 10	<pre>void loop()</pre>			2		871. The voltage is 4.257 V.
10				2		972. The voltage is 4.751 V.
12	x = analogRead(A0);		2			1023. The voltage is 5.000 V.
13	v = 5.0/1023.0 * x;		-	2		1023. The voltage is 5.000 V.
14	<pre>Serial.print("The analog reading is: ");</pre>			2		959. The voltage is 4.687 V.
15	<pre>Serial.print(x);</pre>		2	2		833. The voltage is 4.071 V.
16	<pre>Serial.print(". The voltage is ");</pre>		-	-		706. The voltage is 3.451 V.
17	Serial.print(v, 3);			2		-
18	<pre>Serial.println(" V.");</pre>			2		561. The voltage is 2.742 V.
19	delay(1000);		2	2		434. The voltage is 2.121 V.
20	}		-	2		278. The voltage is 1.359 V.
				2		143. The voltage is 0.699 V.
			-	2		31. The voltage is 0.152 V.
		The	analog	reading	is:	0. The voltage is 0.000 V.


As a check, the potentiometer was adjusted until the reading was 511 = 2.502 V. Measuring the potentiometer voltage with a good voltmeter gave 2.539 V — close but not exact. The power supply voltage was measured to 5.08 V.


Example: Potentiometer to control the 4 LED pulse rate

Use the potentiometer to control the on time for the 4 LEDs (from digital output notes). Have it range between 50 ms and 1 s.

four_leds_potentiometer_control.ino

```
//More fun with 4 LEDs
1
     //Potentiomter will vary LED on time between 50 ms and 1000 ms
2
3
     int i;
     int pin[4];
                           //digital out pins
4
5
     int onTime = 1000; //on time, in millisec
     int reading;
6
7
8
     void setup()
9
     {
10
       //Set up digital pins 3, 5, 6, and 9 for output.
11
       pin[0] = 3;
       pin[1] = 5;
12
       pin[2] = 6;
13
       pin[3] = 9;
14
15
16
       for( i = 0; i <=3; i++ )</pre>
         pinMode( pin[i], OUTPUT );
17
18
     }
19
     void loop()
20
     {
21
22
       reading = analogRead( A0 );
       onTime = 50.0 + 950.0 * reading / 1023.0; //be careful with integer and float math.
23
       for( i = 0; i <=3; i++ )</pre>
24
25
       {
         digitalWrite( pin[i], HIGH );
26
         delay( onTime );
27
         digitalWrite( pin[i], LOW );
28
29
       }
30
```


Arduino Club 2023