\qquad
A simple difference amp is shown at right. The op amp is ideal and the resistors have the nominal values shown, and if the resistors are perfectly matched, the difference-mode gain will be 10 and the common-mode gain will be zero.

Of course, real resistors are not perfect and come with some tolerance, $R=R_{\text {nom }}(1 \pm x)$, where $R_{\text {nom }}$ is the nominal resistor value and x is the resistor tolerance. If the resistors are randomly chosen from a collection, they will not be perfectly matched.

Calculate an expression for the worst-case (i.e. biggest) common-mode gain in terms of the resistor tolerance x. Calculate values for the worst-case G_{c} and the corresponding common-mode rejection ratio for $x=5 \%, 1 \%$, and 0.1%.
$x=5 \%: G_{c}=$ \qquad CMRR $=$ \qquad
$x=1 \%: G_{c}=$ \qquad CMRR $=$ \qquad
$x=0.1 \%: G_{c}=$ \qquad CMRR = \qquad

