You have a source which outputs a signal with a 10-mV amplitude. The source output resistance is 10 k Ω ($R_S = 10 \text{ k}\Omega$). You want to amplify this signal and deliver it to a 1-k Ω load ($R_L = 1 \text{ k}\Omega$). To do the amplification, you have a large number of identical amplifier components. The amplifiers each have gain of 10 (A = 10), input resistance of 10 k Ω ($R_i = 10 \text{ k}\Omega$), and output resistance of 1 k Ω ($R_o = 1 \text{ k}\Omega$).

• What would be the total gain if you use 1 amplifier stage?

 $A_{Tl} =$ _____

• What would be the gain if you cascaded 2 amplifier stages between the source and the load?

A_{T2} = _____

• Three stages?

 $A_{T3} =$ _____

• *n* stages? (This answer should be an expression that involves *n*.)

 $A_{Tn} =$

• If you use a different type of amplifier which has $R_i = 100 \text{ k}\Omega$, $R_o = 0.1 \text{ k}\Omega$, and A = 5, how many stages would be required to have the output signal amplitude be at least 2.0 V ($v_o > 2$ V)?

n = _____