In the amplifier circuit at right, the feedback network consists of the two resistors $R_1 = 1 \text{ k}\Omega$, and $R_2 = 15 \text{ k}\Omega$.

Note: Do not try to analyze this as a feedback problem. Just use circuit analysis to find the closed-loop gain.

a. Start with the ideal model for the amp $R_i \rightarrow \infty$, $R_o \rightarrow 0$, and $A \rightarrow \infty$. Calculate the closed-loop gain in that case. (This was done in class.)

 $G = v_o/v_i =$

b.	$R_i = 100 \text{ k}\Omega, R_o = 0, \text{ and } A = 1000.$	<i>G</i> =
	$R_i = 10 \text{ k}\Omega, R_o = 0, \text{ and } A = 100.$	<i>G</i> =
	$R_i \rightarrow \infty, R_o = 100 \Omega$, and $A = 1000$.	<i>G</i> =
	$R_i \rightarrow \infty, R_o = 1 \text{ k}\Omega, \text{ and } A = 100.$	<i>G</i> =
	$R_i = 100 \text{ k}\Omega, R_o = 100 \Omega$, and $A = 1000$	<i>G</i> =
	$R_i = 10 \text{ k}\Omega, R_o = 1 \text{ k}\Omega, \text{ and } A = 100$	<i>G</i> =