\qquad

In the amplifier circuit at right, the feedback network consists of the two resistors $R_{1}=1 \mathrm{k} \Omega$, and $R_{2}=15 \mathrm{k} \Omega$.

Note: Do not try to analyze this as a feedback problem. Just use circuit analysis to find the closed-loop gain.

a. Start with the ideal model for the amp $R_{i} \rightarrow \infty, R_{o} \rightarrow 0$, and $A \rightarrow \infty$. Calculate the closed-loop gain in that case. (This was done in class.)
$G=v_{o} / v_{i}=$ \qquad
b. $R_{i}=100 \mathrm{k} \Omega, R_{o}=0$, and $A=1000$.

$$
G=
$$

\qquad
$R_{i}=10 \mathrm{k} \Omega, R_{o}=0$, and $A=100$.
$G=$ \qquad
$R_{i} \rightarrow \infty, R_{o}=100 \Omega$, and $A=1000$.
$G=$ \qquad
$R_{i} \rightarrow \infty, R_{o}=1 \mathrm{k} \Omega$, and $A=100$.
$G=$ \qquad
$R_{i}=100 \mathrm{k} \Omega, R_{o}=100 \Omega$, and $A=1000$
$G=$ \qquad
$R_{i}=10 \mathrm{k} \Omega, R_{o}=1 \mathrm{k} \Omega$, and $A=100$
$G=$ \qquad

