
Below is another version of a two-integrator loop, similar to the KHN, but slightly simpler. It produces two of the standard 2nd-order filter functions. It is known as the Tow-Thomas biquad.

Show that
$$T_1(s) = V_1/V_i$$
 is a bandpass function: $T_1(s) = -\frac{R_f}{R_i} \cdot \frac{s\left(\frac{1}{R_fC}\right)}{s^2 + s\left(\frac{1}{R_fC}\right) + \frac{1}{R_AR_BC^2}}$.

For the component values given in the circuit, determine

C		
t ₋ —	· / /p —	(÷. —
10 -	$\mathcal{O}_{F} =$	$O_{\theta} =$

Then find the other transfer function $T_2(s) = V_2/V_i$.

$$T_2(s) =$$