Calculate the resistance of a rectangular bar resistor with dimensions: $L = 20 \mu m$, $W = 5 \mu m$, and $t = 0.5 \mu m$, if the bar is made out of the following materials:

- intrinsic silicon: R = ______ (This is a big value!)
- n-doped silicon ($n = N_D = 5 \times 10^{16} \text{ cm}^{-3}$): R =______
- n-doped silicon ($n = N_D = 5 \times 10^{18} \text{ cm}^{-3}$): R =______
- p-doped silicon ($p = N_A = 5 \times 10^{16} \text{ cm}^{-3}$): R =______
- aluminum ($\rho = 2.8 \,\mu\Omega$ ·cm): R =

Use mobility data from the graph (or equation) given in the notes. Recall that intrinsic silicon has electrons and holes in equal concentration: $n = p = 6 \times 10^9$ cm⁻³ at room temp. Assume everything else is at room temperature as well.