\qquad

Calculate the resistance of a rectangular bar resistor with dimensions: $\mathrm{L}=20 \mu \mathrm{~m}, \mathrm{~W}=5 \mu \mathrm{~m}$, and $t=0.5 \mu \mathrm{~m}$, if the bar is made out of the following materials:

- intrinsic silicon: $R=$ \qquad (This is a big value!)
- n-doped silicon $\left(n=N_{D}=5 \times 10^{16} \mathrm{~cm}^{-3}\right): R=$ \qquad
- n-doped silicon $\left(n=N_{D}=5 \times 10^{18} \mathrm{~cm}^{-3}\right): R=$ \qquad
- p-doped silicon $\left(p=N_{A}=5 \times 10^{16} \mathrm{~cm}^{-3}\right): R=$ \qquad
- aluminum ($\rho=2.8 \mu \Omega \cdot \mathrm{~cm}): R=$

Use mobility data from the graph (or equation) given in the notes. Recall that intrinsic silicon has electrons and holes in equal concentration: $n=p=6 \times 10^{9} \mathrm{~cm}^{-3}$ at room temp. Assume everything else is at room temperature as well.

