
In the circuit shown at right, the Zener has $V_Z = 10 \text{ V}$ and is serving as a regulator to keep the voltage across R_L constant.

a) If $V_S = 15$ V and $R_L = 10$ Ω , calculate the value of R_Z needed in order to have 20 mA of current in the Zener.

 $R_Z =$

b) With the value of R_Z , how much power is being delivered by the source, how power is being consumed in the combination of R_Z and the Zener, and how much power is being delivered to the load resistor?

 $P_S =$ ______. $P_{RZ} + P_Z =$ _____. $P_{RL} =$ _____.

c) What value of R_L will lead to the Zener diode coming out of the breakdown mode. (i.e. What value of R_L will cause $i_Z \rightarrow 0$?)

 $R_L (\min) = \underline{\hspace{1cm}}$.

d) If R_L is removed from the circuit — meaning that $i_L \rightarrow 0$ — how much power will be dissipated in the zener diode?

 $P_Z = \underline{\hspace{1cm}}$.