At right are two configurations for using an *npn* BJT to deliver power to a load (the coil of relay, a DC motor, a light bulb, an LED, etc): one with the load connected to the emitter and one with the load connected to the collector.

Assume that the control voltage, v_i , is either 0 or 5 V, (something like the output from an Arduinotype micro-controller). Of course, if $v_i = 0$ in either circuit, the BJT is off and no current flows. For the case of $v_i = 5$ V for each circuit, calculate the load current current and voltage, i_{RL} and v_{RL} . Calculate

the power delivered to the load. The calculate the power being delivered by the supplies: $P_S = V_{CC} \cdot i_c + v_i \cdot i_b$. How much current is being dissipated in the transistor of the left circuit? How much power is being dissipated in the combination of the transistor and R_B in the right circuit? What is the power delivery efficiency $\eta = P_{RL}/P_S$ in each case?

Name

For the transistors, $\beta_F = 100$.

<i>i_{RL}</i> =	<i>i_{RL}</i> =
<i>v_{RL}</i> =	$v_{RL} = $
$P_{RL} = $	$P_{RL} = $
$P_S = $	$P_{S} = $
<i>P</i> _{<i>bjt</i>} =	$P_{bjt+RB} =$
η =	η =

Put your answers – and whatever work will fit – on this sheet. Staple any sheets with additional work behind.