a. In the circuit at right, the two NMOSs are identical: $\mu_n C_{ox} = 100 \,\mu \text{A/V}^2$,

 $W/L = 5 \ \mu m \ /0.5 \ \mu m$, and $V_{Tn} = 1 \ V$. Find v_{DS1} for the lower transistor.

 $v_{DS1} =$ _____

Choose a new width for the upper transistor so that v_{DS1} for lower transistor will be 3 V. All other parameters and circuit values remain unchanged.

*W*₂=_____

b. In the circuit at right, the NMOS has $\mu_n C_{ox} = 100 \ \mu \text{A/V}^2$, $W_n / L_n = 5 \ \mu \text{m} / 0.5 \ \mu \text{m}$, and $V_{Tn} = 1 \text{ V}$, and the PMOS has $\mu_p C_{ox} = 50 \ \mu \text{A/V}^2$, $W_p / L_p = 10 \ \mu \text{m} / 0.5 \ \mu \text{m}$, and $V_{Tp} = -1 \text{ V}$. Find v_{DSn} for the NMOS.

NMOS: *v*_{DSn} = _____

Choose a new width for the PMOS so that v_{DSn} for NMOS will be 3 V. All other parameters and circuit values remain unchanged.

W_p = _____

