\qquad

For the simple inverter circuit, use SPICE to perform the following simulations.

For the transistor, $V_{T}=1 \mathrm{~V}$ and $K_{n}=0.25 \mathrm{~mA} / \mathrm{V}^{2}$. (It will be necessary to change the K value for the NMOS model in SPICE.)

a. Find the DC values for i_{D} and $v_{D S}$ for the following power supply combinations. You should use a bias point simulation for these DC calculations.

	i_{D} (SPICE)	$v_{D S}$ (SPICE)
$V_{G}=3 \mathrm{~V}$		
$V_{D D}=10 \mathrm{~V}$		
$V_{G}=3 \mathrm{~V}$		
$V_{D D}=5 \mathrm{~V}$		
$V_{G}=5 \mathrm{~V}$		
$V_{D D}=10 \mathrm{~V}$		
$V_{G}=10 \mathrm{~V}$		
$V_{D D}=10 \mathrm{~V}$		

b. With $V_{D D}=10 \mathrm{~V}$, make a plot of the inverter characteristics ($v_{D S}$ vs. V_{G}). This will require a DC sweep simulation with V_{G} sweeping from 0 to 10 V . Use at 10 points per volt when setting up the simulation.
c. Change V_{G} to a sinusoidal source (VSIN) with amplitude of 0.1 V , frequency of 1 kHz , and DC offset of 3 V . Do a transient simulation, plotting the $v_{D S}$ and V_{G} waveforms together on a single set of axes. Plot at least two full periods of the sinusoid. From the voltage traces, note the gain of the amplifier.

