\qquad

The circuit at right is known as a "pseudo-NMOS" inverter. (Note that is very similar to CMOS except that the PMOS gate voltage is fixed at $-V_{D D}$.)

Calculate the output voltage and total power being dissipated in the circuit for $v_{i}=0.5 \mathrm{~V}, 2.5 \mathrm{~V}$, and 5 V .
$v_{i}=0.5 \mathrm{~V}: v_{o}=$ \qquad $P_{i n v}=$ \qquad
$v_{i}=2.5 \mathrm{~V}: v_{o}=$ \qquad $P_{i n v}=$ \qquad
$v_{i}=5.0 \mathrm{~V}: v_{o}=$ \qquad , $P_{i n v}=$ \qquad

Finally, use SPICE to make a plot of the voltage transfer characteristic. In PSPICE, use the MbreakN and MbreakP models with appropriate values for K_{n} and K_{p}.

