Diode on/off model examples

Review of the on/off "method".

- "Guess" as to whether the diode is on or off. It can certainly be an educated guess. And we may not need a guess at all - we might be able to determine the state of the diode by inspecting the circuit and applying a bit of circuit know-how. (i.e. EE 201 skill.)
- If the guess is that the diode is conducting, then replace it with a $0.7-\mathrm{V}$ battery.
- If the guess is that the diode is off (not conducting), then replace it with an open circuit.
- Analyze the circuit with the above substitutions for the diodes.

Calculate the currents through the diodes that were on and the voltage across the diodes that were off.

- Check the validity of the guesses. For an "on" guess, the current should be positive (flowing in the "funnel" direction). If it is negative, then initial guess was probably wrong. For an "off" guess, the diode voltage should be negative. If it is positive, the guess was probably wrong.
- If the checks fail, solve the circuit again with new guesses.

Example la

Calculate the two currents indicated in the circuit at right.

We can be fairly certain, given the polarity of the source, that D_{1} will on. (If it weren't, then all of the source voltage would appear across the diode as a positive voltage - an obvious contradiction. If it's not obvious, write a KVL equation around the left-hand loop and set the current to 0 .)
The state of D_{2} is less certain - it depends on v_{x}, which we don't know. Let's guess that D_{2} is on. Below is the circuit with the diodes replaced according to the guesses.

Example la (con't)

Now it is simply a matter of using our usual (i.e. EE 201) circuit analysis techniques.

As we will see in these examples, the diodes, when treated as being either on or off, can make the analysis simpler. Sometimes we will need to be a little bit clever and use "super-node" ideas, but even then, the problems are usually not too hard. For example, in the circuit above, we note that the voltage across R_{1} is $v_{R 1}=V_{S}-\left(v_{x}+0.7 \mathrm{~V}\right)$ and the voltage across R_{3} is $v_{R 3}=v_{x}-0.7 \mathrm{~V}$

Start by by finding a node equation for v_{x}, and work from there.

$$
\begin{aligned}
& i_{R 1}=i_{R 2}+i_{R 3} \\
& \frac{V_{S}-\left(v_{x}+0.7 \mathrm{~V}\right)}{R_{1}}=\frac{v_{x}}{R_{2}}+\frac{v_{x}-0.7 \mathrm{~V}}{R_{3}}
\end{aligned}
$$

Example la (con't)

Solving for v_{x} :
$v_{x}=\frac{V_{S}-0.7 \mathrm{~V}+\frac{R_{1}}{R_{3}}(0.7 \mathrm{~V})}{1+\frac{R_{1}}{R_{2}}+\frac{R_{1}}{R_{3}}}$

Inserting values, we arrive at $v_{x}=2.25 \mathrm{~V}$.
Then we can calculate the currents:
$i_{R 2}=v_{x} / R_{2}=1.02 \mathrm{~mA}$ and $i_{D 2}=i_{R 3}=\left(v_{x}-0.7 \mathrm{~V}\right) / R_{3}=1.03 \mathrm{~mA}$.
The current is flowing in the correct direction for D_{2} being on, confirming our guess.

Even though we were confident that D_{1} was on, we can confirm with certainty by calculating its current:
$i_{D 1}=i_{R 1}=V_{S}-\left(v_{x}+0.7 \mathrm{~V}\right) / R_{1}=2.05 \mathrm{~mA}$. (Or use $i_{R 1}=i_{R 2}+i_{R 3}$.)
Everything checks out.

Example 1b

Same circuit, different values.

It's the same circuit, and there is enough source voltage to turn on D_{1}. We may as well guess that D_{2} is also on.

Note: From now on, we will not necessarily replace an "on" diode with a voltage source and re-draw the circuit. Instead we will indicate that a diode is "on" by adding a voltage of 0.7 V with polarity signs to the circuit. However, if we think the diode is off, we will probably redraw the circuit with the diode removed. But these are not "rules of analysis" - do whatever works best for you.

Example 1b (con't)

Since it is the same circuit with the same assumptions about the diodes, the calculation should be same as in Example 1a:

$$
v_{x}=\frac{V_{S}-0.7 \mathrm{~V}+\frac{R_{1}}{R_{3}}(0.7 \mathrm{~V})}{1+\frac{R_{1}}{R_{2}}+\frac{R_{1}}{R_{3}}}=0.499 \mathrm{~V} \approx 0.5 \mathrm{~V}
$$

Then the two diode currents are:

$$
\begin{aligned}
& i_{D 1}=(2 \mathrm{~V}-0.7 \mathrm{~V}-0.5 \mathrm{~V}) /(2.2 \mathrm{k} \Omega)=0.36 \mathrm{~mA}, \text { and } \\
& i_{D 2}=(0.5 \mathrm{~V}-0.7 \mathrm{~V}) /(1.5 \mathrm{k} \Omega)=-0.133 \mathrm{~mA} . \text { Gah!! Negative. } D_{2} \text { is not on! }
\end{aligned}
$$

Back to the drawing board with D_{1} on (still) and D_{2} off, leaving R_{3} "dangling".

Then $i_{R 1}=i_{R 2}=i_{D 1}$.
$i_{D 1}=\left(V_{S}-0.7 \mathrm{~V}\right) /\left(R_{1}+R_{2}\right)=0.394 \mathrm{~mA}$

The current for D_{1} checks.
Check voltage for D_{2} : $\mathrm{v}_{\mathrm{D} 2}=i_{R 2} R_{2}=0.394 \mathrm{~V}<0.7 \mathrm{~V} . D_{2}$ off - confirmed.

Example 2a

Calculate the two diode currents in the circuit at right.

It is likely that D_{1} is on. (Use the KVL trick to convince yourself.) We can't say anything certain about D_{2} since it depends on the $v_{R 3}$, which we don't know. Let's guess that it is on, too.

The two node voltages are easily calculated:

$$
\begin{aligned}
& v_{x}=V_{S 1}-0.7 \mathrm{~V}=11.3 \mathrm{~V} \\
& v_{y}=V_{S 2}+0.7 \mathrm{~V}=4.7 \mathrm{~V}
\end{aligned}
$$

The resistor currents follow directly:

$$
\begin{aligned}
& i_{R 1}=v_{x} / R_{1}=11.3 \mathrm{~mA} \\
& i_{R 2}=\left(v_{x}-v_{y}\right) / R_{2}=3 \mathrm{~mA} \\
& i_{R 3}=v_{y} / R_{3}=1 \mathrm{~mA}
\end{aligned}
$$

Use KCL to finish

$$
\begin{aligned}
& i_{D 1}=i_{R 1}+i_{R 2}=14.3 \mathrm{~mA} \\
& i_{D 2}=i_{R 2}-i_{R 3}=2 \mathrm{~mA}
\end{aligned}
$$

Both diode currents are positive in the correct direction. It all checks!

Example 2b

Same circuit, but voltage source values are swapped.

Again, it likely that D_{1} is on. And, as before, we aren't sure about D_{2}. It worked out nicely last time when we assumed it was on, so let's try that again. (The complete calculations won't be repeated. Check them yourself.)

The two node voltages are easily calculated: $v_{x}=3.3 \mathrm{~V}$ and $v_{y}=12.7 \mathrm{~V}$.
The resistor currents are: $i_{R 1}=3.30 \mathrm{~mA}, i_{R 2}=-4.27 \mathrm{~mA}$, and $i_{R 3}=2.70 \mathrm{~mA}$.
Using KCL: $i_{D 1}=i_{R 1}+i_{R 2}=-1.27 \mathrm{~mA}$ and $i_{D 2}=-6.97 \mathrm{~mA}$. Doh! They are both negative. Were both guesses wrong? Probably not - it's likely that one being wrong messed up both currents. It really seems that D_{1} should be on, and so it's likely the guess for D_{2} was bad. So try again with D_{2} reverse-biased.

The circuit re-drawn with D_{1} on and D_{2} off.

The right-hand source is disconnected by the reverse-biased D_{2}. What's left are $V_{S 1}, D_{1}$, and the equivalent resistance of R_{1} in parallel with the series combination of R_{2} and R_{3}. This is "201-easy".

$$
\begin{aligned}
& R_{e q}=R_{1}\left\|\left(R_{2}+R_{3}\right)=(1 \mathrm{k} \Omega)\right\|(2.2 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega)=873 \Omega \\
& v_{x}=V_{S 1}-0.7 \mathrm{~V}=3.3 \mathrm{~V} \\
& i_{D 1}=v_{x} / R_{e q}=3.78 \mathrm{~mA}
\end{aligned}
$$

The voltage v_{y} is easily determined using a voltage divider,

$$
v_{y}=\frac{R_{3}}{R_{2}+R_{3}} v_{x}=2.25 \mathrm{~V}
$$

Finally, we can confirm the reverse bias on D_{2},

$$
v_{D 2}=v_{y}-V_{S 2}=-9.75 \mathrm{~V} . \rightarrow \text { Everything checks. }
$$

Example 3a

Find the indicated diodes currents.

When diodes are in series, there must be sufficient voltage to turn on all of the diodes in the string - if one diode in the string is off, there can be no current and effectively all of them are off. If the 3 -diode string is on, then the total voltage across it must be $3 \cdot(0.7 \mathrm{~V})=2.1 \mathrm{~V}$. Similarly, the 2 -diode string must have 1.4 V across for current to flow.
Assign the bottom node to be ground. With $V_{S}=6 \mathrm{~V}$, we might assume that there is enough voltage to turn on all diodes, and we can immediately assign the three node voltage: $v_{x}=2.1 \mathrm{~V}, v_{y}=1.4 \mathrm{~V}$, and $v_{z}=0.7 \mathrm{~V}$.

Resistor currents:

$$
\begin{aligned}
& i_{R 1}=\left(V_{S}-v_{x}\right) / R_{1}=10 \mathrm{~mA} \\
& i_{R 2}=\left(v_{x}-v_{y}\right) / R_{2}=0.7 \mathrm{~mA} \\
& i_{R 3}=\left(v_{y}-v_{z}\right) / R_{3}=0.389 \mathrm{~mA}
\end{aligned}
$$

Diode currents (use KCL):

$$
\begin{aligned}
& i_{D 3}=i_{R 3}=0.389 \mathrm{~mA} \\
& i_{D 2}=i_{R 2}-i_{D 3}=0.311 \mathrm{~mA} \\
& i_{D 1}=i_{R 1}-i_{D 2}=9.69 \mathrm{~mA}
\end{aligned}
$$

All diode currents positive. It all checks!

Example 3b

Find the indicated diode currents. V_{s} is smaller than in 3a.

It is the same circuit as 3 a , so we might proceed as before and assume that all diodes are on and do the same calculations as before.
If all diodes are conducting, then $v_{x}=2.1 \mathrm{~V}, v_{y}=1.4 \mathrm{~V}$, and $v_{z}=0.7 \mathrm{~V}$.
Resistor currents:

$$
\begin{aligned}
& i_{R 1}=\left(V_{S}-v_{x}\right) / R_{1}=(2 \mathrm{~V}-2.1 \mathrm{~V}) /(390 \Omega)=-0.256 \mathrm{~mA} \\
& i_{R 2}=\left(v_{x}-v_{y}\right) / R_{2}=(2.1 \mathrm{~V}-1.4 \mathrm{~V}) /(1 \mathrm{k} \Omega)=0.7 \mathrm{~mA} \\
& i_{R 3}=\left(v_{y}-v_{z}\right) / R_{3}=(1.4 \mathrm{~V}-0.7 \mathrm{~V}) /(1.8 \mathrm{k} \Omega)=0.389 \mathrm{~mA}
\end{aligned}
$$

Diode currents (use KCL):

$$
\begin{aligned}
& i_{D 3}=i_{R 3}=0.389 \mathrm{~mA} \\
& i_{D 2}=i_{R 2}-i_{D 3}=0.311 \mathrm{~mA} \\
& i_{D 1}=i_{R 1}-i_{D 2}=-0.956 \mathrm{~mA}
\end{aligned}
$$

Blerk! $i_{D 1}$ is negative. Something is wrong.

Example 3b (con't)

We probably should not have jumped into the analysis naively. In retrospect, it now seems obvious that with $V_{S}<2.1 \mathrm{~V}$, the first string of diodes could not be on.

So try again with the first string of diodes being off and all the others on. As before, the conducting diodes set the voltages: $v_{y}=1.4 \mathrm{~V}$, and $v_{z}=0.7 \mathrm{~V}$. Resistor currents:

$$
\begin{aligned}
& i_{R 1}=i_{R 2}=\left(V_{S}-v_{y}\right) /\left(R_{1}+R_{2}\right)=(2 \mathrm{~V}-1.4 \mathrm{~V}) /(1.39 \mathrm{k} \Omega)=0.432 \mathrm{~mA}, \\
& i_{R 3}=\left(v_{y}-v_{z}\right) / R_{3}=(1.4 \mathrm{~V}-0.7 \mathrm{~V}) /(1.8 \mathrm{k} \Omega)=0.389 \mathrm{~mA},
\end{aligned}
$$

Diode currents:

$$
\begin{aligned}
& i_{D 3}=i_{R 3}=0.389 \mathrm{~mA}, \\
& i_{D 2}=i_{R 2}-i_{D 3}=0.043 \mathrm{~mA},
\end{aligned}
$$

D_{1}-string voltage:

$$
\begin{aligned}
& v_{D 1}=v_{x}=V_{S}-i_{R 1} R_{1}=1.83 \mathrm{~V} \\
& v_{D 1}<2.1 \mathrm{~V} \rightarrow \text { "Off" confirmed. }
\end{aligned}
$$

$i_{D 2}$ is smallish, but currents check out.

Example 3c

Find the indicated diodes currents. Same as 3a, except R_{1} and R_{3} are swapped.

There is plenty of source voltage, so it seems obvious that all diodes will be on. Proceed with the same calculations as in 3a.

As before, $v_{x}=2.1 \mathrm{~V}, v_{y}=1.4 \mathrm{~V}$, and $v_{z}=0.7 \mathrm{~V}$.
Resistor currents:

$$
\begin{aligned}
& i_{R 1}=\left(V_{S}-v_{x}\right) / R_{1}=(6 \mathrm{~V}-2.1 \mathrm{~V}) /(1.8 \mathrm{k} \Omega)=2.17 \mathrm{~mA}, \\
& i_{R 2}=\left(v_{x}-v_{y}\right) / R_{2}=(2.1 \mathrm{~V}-1.4 \mathrm{~V}) /(1 \mathrm{k} \Omega)=0.7 \mathrm{~mA} \\
& i_{R 3}=\left(v_{y}-v_{z}\right) / R_{3}=(1.4 \mathrm{~V}-0.7 \mathrm{~V}) /(0.39 \mathrm{k} \Omega)=1.79 \mathrm{~mA},
\end{aligned}
$$

Diode currents:

$$
\begin{aligned}
& i_{D 3}=i_{R 3}=1.79 \mathrm{~mA} \\
& i_{D 2}=i_{R 2}-i_{D 3}=-1.09 \mathrm{~mA} \\
& i_{D 1}=i_{R 1}-i_{D 2}=3.26 \mathrm{~mA}
\end{aligned}
$$

Now $i_{D 2}$ is negative! WTF!?
"All being on" was obvious, wasn't it?

Example 3c (con't)

Here's the problem: With V_{S} and v_{x} fixed, the current flowing from the source is determined by R_{1}.

As R_{1} increases, the current available from the source decreases. At some value of R_{1}, the available current is not sufficient to keep all the diodes on. Some will have to turn off to balance the current - in this case, the middle string is off. So try again, this time with the the D_{2} string off. As before, the conducting diodes set the voltages: $v_{x}=2.1 \mathrm{~V}$, and $v_{z}=0.7 \mathrm{~V}$.
Resistor currents:

$$
\begin{aligned}
& i_{R 1}=\left(V_{S}-v_{x}\right) / R_{1}=(6 \mathrm{~V}-2.1 \mathrm{~V}) /(1.8 \mathrm{k} \Omega)=2.17 \mathrm{~mA} \\
& i_{R 2}=i_{R 3}=\left(v_{x}-v_{z}\right) /\left(R_{2}+R_{3}\right)=(2.1 \mathrm{~V}-0.7 \mathrm{~V}) /(1.39 \mathrm{k} \Omega)=1.01 \mathrm{~mA}
\end{aligned}
$$

Diode currents:
D_{2}-string voltage:

$$
\begin{aligned}
& i_{D 3}=i_{R 3}=1.01 \mathrm{~mA} \rightarrow \mathrm{OK} \\
& i_{D 1}=i_{R 1}-i_{D 3}=1.16 \mathrm{~mA} \rightarrow \mathrm{OK} .
\end{aligned}
$$

$$
v_{D 2}=v_{y}=V_{z}+i_{R 3} R_{3}=1.09 \mathrm{~V}
$$

$$
v_{D 2}<1.4 \mathrm{~V} \rightarrow \text { "Off" confirmed. }
$$

Moral of story: Always (Always!) check "on" currents and "off" voltages.

Example 4a

Find the current in the diodes.

The source voltage by itself is insufficient to forward-bias the the diodes. (Need 2.1 V across diodes.) What effect does the current source have? It could certainly supply current to the diodes. Let's roll the dice and assume the the diodes are off. If true, the answer is trivial - $i_{D}=0$. We need to check, though. The reduced circuit reduces to a familiar one from EE 201.

Write a node-voltage equation:

$$
\begin{aligned}
& \frac{V_{s}-v_{x}}{R_{1}}+I_{S}=\frac{v_{x}}{R_{2}} \\
& v_{x}=\frac{V_{s}+R_{1} I_{S}}{1+\frac{R_{1}}{R_{2}}}
\end{aligned}
$$

Inserting values and calculating: $v_{x}=4.20 \mathrm{~V} \rightarrow$ way bigger than 2.1 V .
The diodes must be on. So try again.

The conducting diodes force the upper node to be 2.1 V relative to ground.

Writing a KCL equation at the upper node:

$$
i_{D}=I_{R 1}+I_{S}-i_{R 2}=\frac{V_{s}-v_{x}}{R_{1}}+I_{S}-\frac{v_{x}}{R_{2}}
$$

Inserting values

$$
i_{D}=\frac{2 \mathrm{~V}-2.1 \mathrm{~V}}{1 \mathrm{k} \Omega}+5 \mathrm{~mA}-\frac{2.1 \mathrm{~V}}{1.5 \mathrm{k} \Omega}=3.5 \mathrm{~mA}
$$

It checks out. The current source is able to keep the diodes on and supply current through both R_{1} and R_{2}.

Example 4b

Same circuit - source voltage is increased and current source direction is changed.

The source voltage is pretty big now. It seems likely that the diodes are on, right? Repeat the calculation from the previous slide:

$$
i_{D}=\frac{V_{s}-v_{x}}{R_{1}}+I_{S}-\frac{v_{x}}{R_{2}}
$$

Inserting values

$$
i_{D}=\frac{8 \mathrm{~V}-2.1 \mathrm{~V}}{1 \mathrm{k} \Omega}-5 \mathrm{~mA}-\frac{2.1 \mathrm{~V}}{1.5 \mathrm{k} \Omega}=-0.5 \mathrm{~mA}
$$

Nope - diodes are not on. As always, current sources can be tricky. In this case, the current source is sucking most of the current from the voltage source, leaving too little for the diodes. So "remove" the didoes and repeat the calculation from page 15 , (remember to change the direction of the current source), giving $v_{x}=1.8 \mathrm{~V}$ - consistent with the diodes being off. It checks.

Example 5

Find the two indicated diode currents.

Yikes! Seeing a circuit like this in EE 201always made us a bit queasy. It looks like it would require 3 node equations or 4 loops with a super-node. Perhaps time to look for a new major.

However, the on/off nature of the diodes make this problem more tractable. Start with assumptions - it looks like the current from the source would split and flow through the diode strings. So, let's assume that all diodes are on. Then we know two of the node voltages, as indicated.

Then we can write two equations, one KVL:

$$
v_{x}+i_{R 1} R_{1}-i_{R 3} R_{3}=v_{y} .
$$

And one KCL:

$$
i_{R 1}+i_{R 3}=I_{S}
$$

These are two equations in two unknowns - $i_{R 1}$ and $i_{R 3}$ - and can be solved in a straight-forward manner to give: $i_{R 1}=5 \mathrm{~mA}$, and $i_{R 3}=5 \mathrm{~mA}$.
Also, since we know the node voltages, we can calculate

$$
i_{R 2}=\frac{v_{x}-v_{y}}{R_{2}}=1.25 \mathrm{~mA} \quad \text { and } \quad i_{R 4}=\frac{v_{y}}{R_{4}}=2.5 \mathrm{~mA}
$$

Now we know all of the resistor currents, and we can use KCL to find the diode currents

$$
i_{D 1}=i_{R 1}-i_{R 2}=3.75 \mathrm{~mA} \quad \text { and } \quad i_{D 2}=i_{R 3}+i_{R 2}-i_{R 4}=3.75 \mathrm{~mA}
$$

The currents are positive, so our assumption of the diode strings being on is confirmed. The numbers are surprisingly symmetric, but that is just a fluke of the component values chosen.

