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Two types of current

Drift current – An electric field (the result of applying a voltage 
between two points) is used as a force to push electrons and holes 
through the semiconductor. This is how current flows in resistors and in 
field-effect transistors (FETs, which are essentially fancy little resistors). 
Recall from physics, .  Drift current is probably familiar.ℰ = − ∂V/∂x

Diffusion current – Whenever there is a non-uniform distribution of 
electrons or holes (a concentration gradient).  The process of random 
motion will cause a net flow of particles from higher concentrations to 
lower concentrations.  This is the mechanism for current flow in diodes 
and bipolar junction transistors. This is probably a new concept for most 
EEs/CprEs, but diffusion processes are surprisingly common in the world 
around us.

Both types of current can occur simultaneously.  (In fact, drift and 
diffusion can be handled as two aspects of single driving force, but that 
concept is beyond us for now.)

Jn = − qnvn Jp = qpvp
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Consider the free electrons in a n-type semiconductor. (All the following 
arguments apply to holes in p-type material, as well.) All electrons are 
jiggling about, moving a random distribution of directions and speeds.  
The electrons (and holes) in the semiconductor are very much like 
atoms or molecules in a gas.  

If we look at the entire 
system, because of the 
randomness, the net current 
due to the motion is 0.  
Everything balances out.

If we apply an electric field, the electrons 
still have random bounces, but each 
electron gets a nudge to the right.  The 
net electron motion is to the right, which 
represent a current going to the left.

ℰ
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The movement of particles can be described using a quantity called 
flux. Flux is the number crossing through a given area in a given time.  
Typical units would be m–2s–1.
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–
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A
If the particles have a concentration n and 
are all moving with net velocity v, then 
within a time interval ∆t, the absolute 
number of particles that moved through the 
area would be ∆N = nvA∆t. Then the flux is 

Flux

qℱ = J = qnv

If the moving particles are charged (electrons or holes), then the flux 
represents a current density:

[ 1
m3 ] [ m

s ] = [ 1
m2s ]ℱ =

ΔN
AΔt

= nv

[C] [ 1
m2s ] = [ C

m2s ] = [ A
m2 ]



EE 230 drift & diffusion – 4

Consider a free electron. (The story is the same with holes.) We know 
that an electric field represents a force applied to a charged particle,

Using one of Newton’s Laws, the electric field will cause the charged 
particle to accelerate.

Electrons (holes) in an electric field

F = qℰ

F = qℰ = moa = mo
dv
dt

If the electric field is constant in time, the particle will have a constant 
acceleration, meaning that it speeds up linearly with time.

If we have enough energy 
and time, the electron 
would eventually hit the 
speed of light, co.ℰ

mo a, v

v

t

a

to ∞ ?v = ( qℰ
mo ) t



EE 230 drift & diffusion – 5

Electron (or hole) in a crystal
For a free electron inside a perfect semiconductor crystal with a uniform 
electric field applied, the situation is a bit surprising (and un-intuitive) 
— it is exactly the same as the free electron case.  A constant electric 
field causes the electron to accelerate uniformly.

me = m*mo

v = ( qℰ
me ) t

However, the electron seems 
to move as if it has different 
mass. We call it the effective 
mass. (This is very weird, 
and we are not going to 
explain it here.)  Otherwise, 
it behave as if it were a free 
electron. ℰ

me v
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However, there are no perfect crystals.  With 1022 atoms per cubic 
centimeter, there will always be some imperfections.  Even if the crystal 
is 99.999999% perfect, (1 flaw per billion atoms), that means the defect 
density is 1013 per cubic centimeter, which is still a rather high number. 

Whenever an electron (or hole) encounters an imperfection, it will be 
deflected off its trajectory.

ℰ

me
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How does scattering affect the current?  To get a feel for the situation, 
we can contrive an overly simplified model of what is happening. 

1. A uniform electric field accelerates an electron from rest. 

2. After exactly τ seconds, the electron hits an impurity that brings it to 
a dead stop. 

3. Since the -field is still present, the electron begins to accelerate 
again. 

4. After another τ seconds, the electron hits another impurity and 
comes to a  dead stop again. 

5. Keep repeating. 

Then find the average value of velocity.

ℰ

v

tτ 2τ 3τ

vmax
vavg

vmax =
qℰ
me

τ

vavg =
qℰτ
2me
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vavg = ( qτ
2me ) ℰ

This herky-jerky motion is the result of the field accelerating the 
electrons and the collisions that stop them.  The combination leads to an 
interesting result when looking at the average effect — the average 
velocity is proportional to the field.  

The proportionality constant is a property of the sample — the time 
between collisions and the effective mass of the electrons.  We call this 
quantity the mobility. It tells how fast the electrons will drift when an 
electric field is applied.

vavg = μℰ

Since mobility depends on effective mass, it is different for electrons and 
holes in a given semiconductor.  Also, effective masses differ by 
semiconductor — some are high some are low.  And mobility depends 
on how long the electron or hole can travel between collisions, τ.

[ m
s ] = μ [ V

m ] μ → [ m2

V ⋅ s ] [ cm2

V ⋅ s ]or
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Scattering & mobility
Any imperfection in the periodicity of the crystal will cause carriers to 
scatter. 

• charged impurity atoms substituted into crystal locations 

• vibrations in the crystal 

• other carriers (a free electron or a hole is a type of imperfection) 

• dislocations (lattice planes shifted out of place) 

• surfaces (can be viewed as a severe form of dislocation) 

• uncharged impurity atoms substituted into the crystal 

• vacancies or interstitial atoms (missing or misplaced atoms) 

Any given sample of semiconductor crystal will probably have all of 
these scattering mechanisms present and all will contribute to the 
scattering that limits the speed of the carriers.  The relative contribution 
of each depends on the relative amounts.  The more scatterers, the 
shorter the time between collisions and the lower the mobility. The first 
two items in the list are usually the most important in a semiconductor.
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Each type of scattering mechanism will have its own average time between 
collisions.  The effect with the smallest τ will have the biggest effect in 
limiting mobility.

Analogy 
When walking down a city sidewalk, you might have to walk around – scatter 
off – a number of things: other pedestrians, lamp posts, mailboxes, discarded 
scooters, open manholes, etc. The more you have to weave and dodge, the 
slower your average velocity down the sidewalk.  During the day, when the 
streets are crowded, avoiding other pedestrians is the biggest limit in 
determining how fast you can walk.  Avoiding the other items is a relative 
minor annoyance.  The τ of “colliding” with other people is much smaller 
than the τ for the other obstacles.  But at night, when the streets are empty of 
people, the τ for avoiding pedestrians is much bigger than during the day – 
there aren’t as many to avoid. In that case, the mean free times for the lamp 
posts, mailboxes, etc. might become the limits on the speed at which you can 
travel down the sidewalk.

So it is with electrons and holes – every imperfection will cause them to 
scatter, but some are more important than others, due mainly to the effective 
concentrations. In a typical semiconductor, charged impurity atoms and 
phonons are usually the most prevalent types of scattering, and so those two 
are most important in determining the overall mobility.



EE 230 drift & diffusion – 11

To combine the effects of different scattering mechanisms, we need a 
composite scattering time that includes everything.  Because shorter times are 
more limiting and thus more important, we should “add” the times using 
inverses (known as Matthiessen’s rule):

1
τtotal

=
1
τ1

+
1
τ2

+
1
τ3

+ . . .

1
μtotal

=
1
μ1

+
1
μ2

+
1
μ3

+ . . .

Example: For electrons in some semiconductor, two scattering mechanisms 
lead to two individual mobilities µ1 = 500 cm2/V·s and µ2 = 1000 cm2/V·s.  
What is the overall mobility for electrons in the semiconductor?

The most frequency scattering (i.e. having the shortest scattering time) will 
have the biggest effect in determining the overall mobility. Using the 
individual scattering times, we can define a separate mobility for each 
scattering mechanism, μ1 = qτ1/m, μ2 = qτ2/m, etc. and we can re-cast above 
equation using mobilities.

μtotal = [ 1
μ1

+
1
μ2 ]

−1

=
1

500 cm2

V ⋅ s

+
1

1000 cm2

V ⋅ s

−1

= 333
cm2

V ⋅ s

(Looks like parallel resistors.)
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Ionized impurity scattering
One of the two most important sources of scattering in a semiconductor is ionized 
impurity scattering. If a lattice atom becomes ionized, it will cause passing 
electrons or holes to deflect in some fashion (like charges repel, opposite attract.)  
What is the source of the ionized lattice atoms?  They are introduced intentionally!  
They are an unavoidable consequence of the doping process. When a phosphorus 
donor atom substitutes for a silicon atom, its fifth electron breaks loose and moves 
away. The atom is short one electron to match the positive charge in the nucleus, 
and so the atom ends up with a +q net charge.  This charge is immobile – it is 
locked into the lattice.   The story is the same with a boron acceptor atom, except 
that the boron accepts an electron from somewhere else in the crystal, resulting in 
a net charge of –q, also locked in place. 

Any electron or hole passing near an ionized phosphorus or boron atom in the 
crystal will be deflected (scattered).  Increasing the doping to increase the carrier 
concentration causes the mobility will go down. There are more carriers, but they 
are moving slower. This seems a bit ironic — and perhaps self-defeating since it 
appears that the two effects are nullifying each other. However, we will see shortly 
that while ion impurity scattering certainly has an effect, it doesn’t completely 
cancel the changes in carrier concentration.
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ℰ

me
+

+
+

–

–
+
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Ionized impurity scattering

Electrons and holes are scattered by both positive and negative ions.
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Scattering from lattice vibrations (phonons)
The other major semiconductor scattering mechanism is caused by lattice 
vibrations. In simple terms, the atoms in the crystal are not static but are 
constantly oscillating around the nominal lattice position.  This is an acoustic 
(mechanical) vibration akin to a movement of a plucked guitar string, but on a 
much smaller scale.  From quantum mechanics, any oscillating wave, including 
acoustic waves, can be treated as a particle.  In the case of acoustic waves, the 
corresponding particles are known a phonons. 

Electrons and holes can be scattered very effectively from the lattice vibrations 
(which could also be called colliding with a phonon).  There will be a 
scattering time, τphonon, and a corresponding mobility, μphonon = qτphonon /me. 

Lattice vibrations are always present in a semiconductor (or in any solid 
material).  The atoms will always be jiggling due to the thermal energy of the 
material.  In fact, lattice vibrations / phonons are a way to describe the thermal 
energy.  When a solid material heats up, the atoms vibrate more vigorously and 
when the material cools down, they vibrate less.  Viewed the opposite way, the 
stronger vibrations of the atoms, the hotter the material must be. 

Obviously, scattering from phonons is very temperature-dependent.  Cooling 
the semiconductor will speed up the carriers!  On the other hand, phonon 
scattering is essentially independent of doping level.
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Mobility as a function of doping concentration

μ = [ 1
μion (N )

+
1

μphonon ]
−1

μn = 65
cm2

V ⋅ s
+

1268 cm2

V ⋅ s

1 + ( ND

8.5 × 1016 cm−3 )
0.71 μp = 48

cm2

V ⋅ s
+

447 cm2

V ⋅ s

1 + ( NA

6.63 × 1016 cm−3 )
0.76

Phonons dominate at 
low doping, ionized 
impurities become 
dominate as doping 
increases.

Equations below are curve 
fits to experimental data 
for electrons and holes.
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Drift current and conductivity
Jn = − qnvn = − qNDvn

vn = − μnℰ

Jn = qnμnℰ = (qμnND) ℰ

Jp = qpvp = qNAvp

vp = μpℰ

Jp = qnμpℰ = (qμpNA) ℰ

Jn = σnℰ Jp = σpℰ

σn = qμnn ( or qμpp )is the conductivity of the material – it is a property of 
a given semiconductor with a given doping concentration.  
(Observation:   is the microscopic version of Ohm’s Law!) 

Looking at units:

J = σℰ

[ A
m2 ] = σ [ V

m ] σ → [ A
V ⋅ m ] = [ 1

Ω ⋅ m ] = [ S
m ] [ S

cm ]
Typical value: σn = (1.6 × 10−19 C) (1000

cm2

V ⋅ s ) (1017 cm−3) = 16
S

cm

or
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A related quantity is resistivity:  ρn = 1/σn = (qμnn)–1 [ ρp = (qμpp)–1 for p-
type material].  No new information here, but often resistivity will be 
reported rather than conductivity.

Jn =
ℰ
ρn

Jp =
ℰ
ρp

Resistivity

phosphorus (n-type)
boron (p-type)
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It is common to plot 
resistivity vs. doping 
concentration, using the 
resistivity definition and 
the mobility from page 15.

Of course, for the same 
concentrations, holes have 
different mobilities and so 
will have different 
resistivities.  Also, we can 
see the slight wiggles in 
the curves due to the 
changing mobility.
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Resistivity → resistors

L

t

W

+– V

I
Make a rectangular bar resistor.  
Apply a voltage down the length.

Jn =
ℰ
ρn

I
W ⋅ t

=
1
ρn

V
L

I =
Wt
ρnL

V

I =
V
R

R =
ρL
Wt

=
L

qμnNDWt

Classic resistor equation.  The properties 
of the “device” are a combination of 
material properties (µn and ND) and 
geometrical shape (L, W, t).
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Example
A piece of silicon is doped n-type with phosphorus with a doping level 
of ND = 3x1017 cm–3  (3x1023 m–3).  The corresponding electron mobility 
is µn = 750 cm2/V·s (0.0750 m2/V·s) What is the conductivity of the n-
type sample? 

The electron concentration is equal to the doping concentration.

n = ND = 3x1017 cm–3.

Then: σ = qµnn = (1.6x10–19 C)(750 cm2/V·s)(3x1017 cm–3) = 36 A/V·cm.

= 36 S/cm = 36 Ω–1cm–1

What is the resistivity?

ք =
�
ֆ =

�
�� 6�FP = �.��� ۙ · FP
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Example 2
A piece of silicon is doped p-type with born with a doping level of NA = 
2x1016 cm–3  (2x1022 m–3).  The corresponding hole mobility is µp = 
367 cm2/V·s (0.0367 m2/V·s) What is the resistivity of the p-type sample? 

The hole concentration is equal to the doping concentration.

p = NA = 2x1016 cm–3.

What is the conductivity?

Then:

ρ =
1

qμpNA
=

1

(1.6 × 10−19 C) (367 cm2

V ⋅ s ) (2 × 1016 cm−3)
= 0.85 Ω ⋅ cm

σ =
1
ρ

= 1.17 S/cm
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Example 3
A resistor is made out of n-doped silicon. 
The doping level is ND = 1x1018 cm–3.  
(The corresponding electron mobility is 
µp = 425 cm2/V·s. The resistor has 
dimensions of L = 100 µm, W = 20 µm, 
and t = 2 µm.  What is the resistance of 
the resistor? 

First, find the resistivity of the n-type silicon. n = ND = 1x1018 cm–3.

ք =
�

TܟQQ
=

�
(�.�� ����� &)

�
���FP�

9·V

�
(���� FP��)

= �.��� ۙ · FP

Then

5 =
ք/
: · W =

(�.��� ۙ · FP) (�.�� FP)

(�.��� FP) (�.���� FP)
= ���ۙ

L

t

W

+– V

I

Note: 1 µm = 10–4 cm = 10–6 m.
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Example 4
A resistor is made out of p-doped silicon. 
The doping level is NA = 5x1016 cm–3.  
The corresponding hole mobility is µp = 
410 cm2/V·s. The cross-sectional area of 
the resistor is W·t = (5 µm)(1µm) = 5 µm2 
= 5x10–8 cm2.  What length is required 
for a resistance of 5 kΩ?

First, find the resistivity of the p-type silicon. p = NA = 5x1016 cm–3.

L

t

W

+– V

I

5 =
ք/
: · W

ք =
�

TܟSS
=

�
(�.�� ����� &)

�
���FP�

9·V

�
(�� ���� FP��)

= �.�� ۙ · FP

/ =
5 ·: · W

ք = �.�� � ���� FP = Pܟ��.� (Pay attention to units.)
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Diffusion
Diffusion is the second method by which electrons and holes can have 
net current flow.  Diffusion is the “smoothing” process by which 
randomly moving particles will be re-distributed into a more uniform 
pattern.  Whenever particles have a non-uniform distribution and they 
can move randomly, there will be a net flow from the regions of higher 
concentration into regions of lower concentration.  Diffusion is 
common process that we can see all the time in the world around us. 
Here are a few examples: 

• steam billowing off a pot of boiling water 

• oders moving through the air to be detected by your nose 

• tea moving from tea bag into the surrounding water 

• an ink stain moving through a piece of cloth 

• heat moving through a solid. 

The random motion of electrons and holes in a semiconductor leads to 
diffusion currents.
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To develop some qualitative understanding of diffusion, we can contrive 
a starting concentration gradient of some particles and see what 
happens as they move around.  Consider a box containing particles 
These could be atoms/molecules in the air or electrons/holes in a 
semiconductor.  Initially, the particles are confined to the left side of the 
box, but are evenly distributed on that side.  The right side is empty.  
Clearly, there is a strong concentration gradient.

n(x)

t

no

t ≤ 0
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At t = 0, the barrier confining the particles to the left side is removed.  
The particles are still bouncing around in the same random manner, but 
the particles that were near the barrier and moving towards the right 
can now move into the empty space.  However, there are no particles 
available to move to the left to balance those out.  There is a net flow of 
particles to the right across the former dividing line.

n(x)

t

no

t = t1 ≥ 0 



EE 230 drift & diffusion – 26

As time increases, the net flow from left to right continues – as long as 
there are more particles on the left than there are on the right.  

n(x)

t

no

t = t2 ≥ t1 
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Eventually, the particles are re-distributed back to a uniform, but lower,  
concentration throughout the entire box.  Since the distribution is 
uniform and the motion of the individual particles is still random, there 
is no longer a net flow in any direction – everything averages to zero 
again.

n(x)

t

nf

t → ∞
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Fick’s Law
Adolf Fick came up with a quantitative description of the diffusion 
process (1855).  If the process is described in words, the equation is 
easy to understand: A gradient in the concentration of particles leads to 
a proportional net flow (i.e. a flux) of particles from the higher 
concentration to the lower concentration:

ℱ = − D
∂N
∂x

where D is the diffusion coefficient – a macroscopic quantity that 
describes microscopic movement of the individual particles.   It 
depends on how easily the particles can move and how much they 
bounce around (scatter) while they are moving.  If D = 0, there can be 
no diffusion.  (Consider the water molecules in a block of ice versus the 
molecules in a cup of liquid.)  The diffusion coefficient is a property of 
the particles in whatever medium they are moving. The negative sign 
accounts for the movement from high to low concentration.

[ 1
m2 ⋅ s ] = D

1
m3

m
D → [ m2

s ] [ cm2

s ]or
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Diffusion current density
If the particles are charged (like electrons or holes) then the diffusion is 
an electrical current.

Jn = − qℱn = qDn
∂n (x)

∂x

Jp = qℱp = − qDp
∂p (x)

∂x

This gives us another mechanism for making currents flow in a 
semiconductor – artificially create a concentration gradient and let the 
electrons or holes diffuse in response.  The trick is in creating the 
concentration gradient.  We will see shortly that joining together p and 
n regions leads to concentration gradients that can be manipulated.  
This is how diodes and bipolar junction transistors are made.
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Example
The electron distribution in some region of a 
piece of silicon region has a linear variation:

n (x) = n1
x
W

where n1 = 1012 cm–3 and W = 2 µm.  The diffusion 
coefficient for the electrons is 35 cm2/s.

∂ (x)
∂x

=
n1

W

Jn = qDn
∂n (x)

∂x
= qDn

n1

W

= (1.6 × 10−19 C) (35
cm2

s ) ( 1012

2 × 10−4 cm ) = 28
mA
cm2

The electrons are moving to the left, and the current is to the right.

n(x)

W

n1
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Example
The hole distribution in the region x > 0 of a piece of silicon has an 
exponential variation:

p (x) = p1 exp (−
x
L )

where p1 = 1014 cm–3 and L = 5 µm.  The diffusion coefficient for the holes 
is 10 cm2/s.

∂p (x)
∂x

= −
p1

L
exp (−

x
L )

Jp (x) = − qDp
∂p (x)

∂x

= (1.6 × 10−19 C) (10
cm2

s ) ( 1014 cm−3

5 × 10−4 cm ) exp (−
x
L )

= (320
mA
cm2 ) exp (−

x
L )

= qDp
p1

L
exp (−

x
L )


