First-order filters

The general form for the transfer function of a first order filter is:

$$
T(s)=\frac{a_{1} s+a_{0}}{b_{1} s+b_{o}}
$$

However, we will typically recast this into a standard form:

$$
T(s)=G_{o} \cdot \frac{s+Z_{o}}{s+P_{o}}
$$

There will always be a single pole at $s=-P_{o}$. The pole must be real (there is only one, so no complex conjugates are not possible) and it must be negative (for stability). There will always be a zero, which can be at $s=0$, as $s \rightarrow \pm \infty$ (zero at infinity), or somewhere else, $s=-Z_{o}$. (Note the zero can have a positive value.) There may be a gain factor, G_{o}, which might be 1 or smaller (for a passive circuit with a voltage divider) or have a magnitude greater than 1 for an active circuit.

The two most important cases are the zero at infinity, which is a lowpass filter and the zero at zero, which is the high-pass filter.

Low-pass

In the case were $a_{1}=0$, we have a low-pass function.

$$
T(s)=\frac{a_{o}}{b_{1} s+b_{o}}
$$

In standard form, we write it as:
zoro as s $\rightarrow \pm \infty$

$$
T(s)=G_{o} \cdot \frac{P_{o}}{s+P_{o}}
$$

The reason for this form will become clear as we proceed. We will ignore the gain initially and focus on sinusoidal behavior by letting $s=j \omega$.

$$
\left.\frac{P_{o}}{s+P_{o}}\right|_{s=j \omega}=\frac{P_{o}}{P_{o}+j \omega}
$$

Re-expressing the complex value in magnitude and phase form:

$$
\frac{P_{o}}{P_{o}+j \omega}=\left[\frac{P_{o}}{\sqrt{P_{o}^{2}+\omega^{2}}}\right] \exp \left(j \theta_{L P}\right) \quad \theta_{L P}=-\arctan \left(\frac{\omega}{P_{o}}\right)
$$

By looking at the magnitude expression, we can see the low-pass behavior.
For low frequencies $\left(\omega \ll P_{o}\right): \frac{P_{o}}{\sqrt{P_{o}^{2}+\omega^{2}}} \approx \frac{P_{o}}{\sqrt{P_{o}^{2}}}=1$.
At high frequencies $\left(\omega \gg P_{o}\right): \frac{P_{o}}{\sqrt{P_{o}^{2}+\omega^{2}}} \approx \frac{P_{o}}{\sqrt{\omega^{2}}}=\frac{P_{o}}{\omega}$.
At low frequencies, the magnitude is 1 (the output is equal to the input) and at high frequencies, the magnitude goes down inversely with frequency, consistent with the notion of a low-pass response.

We can also examine the phase at the extremes.
For low frequencies $(\omega \approx 0): \theta_{L P}=-\arctan \left(\frac{\omega}{P_{o}}\right) \approx 0$.
At high frequencies $(\omega \rightarrow+\infty): \theta_{L P}=-\arctan \left(\frac{\omega}{P_{o}}\right) \approx-90^{\circ}$.

We can use the functions to make the magnitude and phase as frequency response plots.

$$
M=\frac{P_{o}}{\sqrt{P_{o}^{2}+\omega^{2}}}
$$

Cut-off frequency

Use the standard definition for cut-off frequency, which is the frequency at which the magnitude is down by $\sqrt{2}$ from the value in the pass-band. For our low-pass function, the pass band is at low frequencies, and the magnitude there is 1 . (Again, we are "hiding" G_{o} by assuming that it is unity. If $G_{o} \neq 1$, then everything is scaled by G_{o}.)

$$
M=\frac{1}{\sqrt{2}}=\frac{P_{o}}{\sqrt{P_{o}^{2}+\omega_{c}^{2}}}
$$

With a bit of algebra, we find that $\omega_{c}=P_{o}$. The cut-off frequency is defined by the pole. Tricky! Thus, in all of our equations, we could substitute ω_{c} for P_{o}.

We can also calculate the phase at the cut-off frequency.

$$
\theta_{L P}=-\arctan \left(\frac{\omega_{c}}{P_{o}}\right)=-45^{\circ}
$$

The cut-off frequency points are indicated in the plots on the previous slide.

To emphasize the importance of the corner frequency in the low-pass function, we can express all the previous results using ω_{c} in place of P_{o}. On the left are the functions in "standard" form. On the right, the functions are expressed in a slightly different form that is sometimes easier to use.

$$
\begin{array}{ll}
T_{L P}(s)=G_{o} \cdot \frac{\omega_{c}}{s+\omega_{c}} & T_{L P}(s)=\frac{G_{o}}{1+\frac{s}{\omega_{c}}} \\
T_{L P}(j \omega)=G_{o} \cdot \frac{\omega_{c}}{j \omega+\omega_{c}} & T_{L P}(j \omega)=\frac{G_{o}}{1+j\left(\frac{\omega}{\omega_{c}}\right)} \\
\left|T_{L P}(j \omega)\right|=\left|G_{o}\right| \frac{\omega_{c}}{\sqrt{\omega^{2}+\omega_{c}^{2}}} & \left|T_{L P}(j \omega)\right|=\frac{\left|G_{o}\right|}{\sqrt{1+\left(\frac{\omega}{\omega_{c}}\right)^{2}}} \\
\theta_{L P}=-\arctan \left(\frac{\omega}{\omega_{c}}\right) & \theta_{L P}=-\arctan \left(\frac{\omega}{\omega_{c}}\right)
\end{array}
$$

Again, we could just as easily use real frequency rather than angular frequency. As an exercise: re-express all of the above formulas using f instead of ω.

Low-pass filter circuits: simple RC

Resistor and capacitor in series output taken across the capacitor.

Use a voltage divider to find the transfer
 function.

$$
\begin{aligned}
& V_{o}(s)=\frac{Z_{C}}{Z_{C}+Z_{R}} V_{i}(s) \\
& T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\frac{Z_{C}}{Z_{C}+Z_{R}}=\frac{\frac{1}{s C}}{\frac{1}{s C}+R}=\frac{\frac{1}{R C}}{s+\frac{1}{R C}}=\frac{\omega_{c}}{s+\omega_{c}}
\end{aligned}
$$

Clearly, this is low-pass with $G_{o}=1$ and $\omega_{c}=\frac{1}{R C}$
The only real design consideration is choosing the $R C$ product, which then sets the corner frequency.

Low-pass filter circuits: simple RL

Inductor and resistor in series output taken across the resistor.

Use a voltage divider to find the transfer function.

$$
\begin{aligned}
& V_{o}(s)=\frac{Z_{R}}{Z_{R}+Z_{L}} V_{i}(s) \\
& T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\frac{Z_{R}}{Z_{R}+Z_{L}}=\frac{R}{R+s L}=\frac{\frac{R}{L}}{s+\frac{R}{L}}=\frac{\omega_{c}}{s+\omega_{c}}
\end{aligned}
$$

Again, low-pass behavior with $G_{o}=1$, but now with $\omega_{c}=\frac{R}{L}$
As with the previous example choosing the " $R L$ time constant", we can define the pass-band of this low-pass filter.

Low-pass filter circuits: inverting op amp

Clearly, this is also low-pass with $G_{o}=-\frac{R_{2}}{R_{1}}$ and $\omega_{c}=\frac{1}{R_{2} C}$

Be careful with the extra negative sign in the gain: $-1=\exp \left(j 180^{\circ}\right)$
At low frequencies: $|T| \rightarrow R_{2} / R_{1}$, and $\theta_{T} \rightarrow 180^{\circ}\left(=-180^{\circ}\right)$
At high frequencies: $|T| \rightarrow\left(\omega R_{1} C\right)^{-1}$, and $\theta_{T} \rightarrow+90^{\circ}\left(=-270^{\circ}\right)$

Magnitude and phase plots for an active low-pass filter with $R_{1}=1 \mathrm{k} \Omega, R_{2}$ $=25 \mathrm{k} \Omega$, and $C=6.4 \mathrm{nF}$, giving $f_{o}=1000 \mathrm{~Hz}$ and $G_{o}=-25\left(\left|G_{o}\right|=28 \mathrm{~dB}\right)$.

Low-pass filter circuits: non-inverting op amp

Note: It might slightly disingenuous to treat this as if it were some new type of filter - we can readily see that it is a simple RC filter cascaded with a simple noninverting amp. However, it is still a useful circuit.

$$
V_{+}(s)=\frac{Z_{C}}{Z_{C}+Z_{R}}=\frac{\frac{1}{R C}}{s+\frac{1}{R C}} \quad \text { simple } R C
$$

$$
V_{o}(s)=\left(1+\frac{R_{2}}{R_{1}}\right) V_{+}(s) \quad \text { non-inverting amp }
$$

$$
T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{\frac{1}{R C}}{s+\frac{1}{R C}}\right)
$$

Low-pass with $G_{o}=\left(1+\frac{R_{2}}{R_{1}}\right)$ and $\omega_{c}=\frac{1}{R C}$

Low-pass filter circuits: another RC

$$
\begin{aligned}
T(s)=\frac{V_{o}(s)}{V_{i}(s)} & =\frac{Z_{P}}{Z_{P}+Z_{R 1}} \\
& =\frac{\frac{R_{2}}{1+s R_{2} C}}{\frac{R_{2}}{1+s R_{2} C}+R_{1}} \\
& =\frac{R_{2}}{R_{2}+R_{1}+s R_{1} R_{2} C} \\
& =\left(\frac{R_{2}}{R_{1}+R_{2}}\right) \frac{\frac{1}{R_{P} C}}{s+\frac{1}{R_{P} C}} \quad R_{P}=R_{1} \| R_{2} \quad \\
& =\frac{R_{2}\left(\frac{1}{s C}\right)}{R_{2}+\frac{1}{s C}} \\
& =\frac{R_{2}}{1+s R_{2} C} \\
G_{o} & =\frac{R_{2}}{R_{1}+\omega_{c}} \quad \text { Low-pass. }
\end{aligned}
$$

High-pass

In the case were $a_{0}=0$, we have a high-pass function.

$$
T(s)=\frac{a_{1} s}{b_{1} s+b_{o}}
$$

In standard form, we write it as:

We will ignore the gain initially (set $G_{o}=1$) and focus on sinusoidal behavior by letting $s=j \omega$.

$$
\left.\frac{s}{s+P_{o}}\right|_{s=j \omega}=\frac{j \omega}{P_{o}+j \omega}
$$

Re-expressing the complex value in magnitude and phase form:

$$
\frac{j \omega}{P_{o}+j \omega}=\left[\frac{\omega}{\sqrt{P_{o}^{2}+\omega^{2}}}\right] \exp \left(j \theta_{H P}\right) \quad \theta_{H P}=90^{\circ}-\arctan \left(\frac{\omega}{P_{o}}\right)
$$

By looking at the magnitude expression, we can see the high-pass behavior.
For low frequencies $\left(\omega \ll P_{o}\right)$: $\frac{\omega}{\sqrt{P_{o}^{2}+\omega^{2}}} \approx \frac{\omega}{\sqrt{P_{o}^{2}}}=\frac{\omega}{P_{o}}$.
At high frequencies $\left(\omega \gg P_{o}\right): \frac{\omega}{\sqrt{P_{o}^{2}+\omega^{2}}} \approx \frac{\omega}{\sqrt{\omega^{2}}}=1$.
At low frequencies, the magnitude is increasing with frequency, and at high frequencies, the magnitude is 1 (the output is equal to the input). This behavior is consistent with a high-pass response.

We can also examine the phase at the extremes.
For low frequencies $\left(\omega \ll P_{o}\right): \theta_{H P}=90^{\circ}-\arctan \left(\frac{\omega}{P_{o}}\right) \approx 90^{\circ}$.
At high frequencies $\left(\omega \gg P_{o}\right): \theta_{H P}=90^{\circ}-\arctan \left(\frac{\omega}{P_{o}}\right) \approx 0^{\circ}$.

and phase as frequency response plots. $\sqrt{P_{o}^{2}+\omega^{2}}$

Cut-off frequency

Use the standard definition for cut-off frequency, which is the frequency at which the magnitude is down by $\sqrt{2}$ from the value in the pass-band. For our high-pass function, the pass band is at high frequencies, and the magnitude there is 1 . (Again, we are "hiding" G_{o} by assuming that it is unity. If $G_{o} \neq 1$, then everything is scaled by G_{o}.)

$$
M=\frac{1}{\sqrt{2}}=\frac{\omega}{\sqrt{P_{o}^{2}+\omega_{c}^{2}}}
$$

With a bit of algebra, we find that $\omega_{c}=P_{o}$. The same result as for lowpass response, except that pass-band is above the cut-off frequency in this case. Once again, we see the importance of the poles in determining the behavior of the transfer functions.
We can calculate the phase at the cut-off frequency.

$$
\theta_{H P}=90^{\circ}-\arctan \left(\frac{\omega_{c}}{P_{o}}\right)=45^{\circ}
$$

The cut-off frequency points are indicated in the plots on the previous slide.

To emphasize the importance of the corner frequency in the high-pass function, we can express all the previous results using ω_{c} in place of P_{o}.

$$
\begin{array}{ll}
\frac{G_{o}}{\sqrt{2}}=\frac{G_{o} \cdot P_{0}}{\sqrt{\omega_{c}^{2}+P_{0}^{2}}} \rightarrow P_{0}=\omega_{c} & \begin{array}{l}
\text { The corner frequency is the } \\
\text { value of the pole. }
\end{array} \\
T_{H P}(s)=G_{0} \cdot \frac{s}{s+\omega_{c}} & T_{H P}(s)=\frac{G_{o}}{1+\frac{\omega_{c}}{s}} \\
T_{H P}(j \omega)=G_{0} \cdot \frac{j \omega}{j \omega+\omega_{c}} & T_{H P}(j \omega)=\frac{G_{o}}{1+\left(\frac{\omega_{c}}{j \omega}\right)} \\
\left|T_{L P}(j \omega)\right|=G_{o} \cdot \frac{\omega}{\sqrt{\omega^{2}+\omega_{c}^{2}}} & =\frac{G_{o}}{1-j\left(\frac{\omega_{c}}{\omega}\right)} \\
\theta_{H P}=\arctan \left(\frac{\omega}{0}\right)-\arctan \left(\frac{\omega}{\omega_{c}}\right) & \left|T_{H P}(j \omega)\right|=\frac{G_{o}}{\sqrt{1+\left(\frac{\omega_{c}}{\omega}\right)^{2}}} \\
\quad=90^{\circ}-\arctan \left(\frac{\omega}{\omega_{c}}\right) & \theta_{H P}=+\arctan \left(\frac{\omega_{c}}{\omega}\right)
\end{array}
$$

Exercise: Re-express all of the above formulas using f instead of ω.

High-pass filter circuits: simple RC

Capacitor and resistor in series output taken across the resistor.

Use a voltage divider to find the transfer function.

$$
\begin{aligned}
& V_{o}(s)=\frac{Z_{R}}{Z_{C}+Z_{R}} V_{i}(s) \\
& T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\frac{Z_{R}}{Z_{R}+Z_{C}}=\frac{R}{R+\frac{1}{s C}}=\frac{s}{s+\frac{1}{R C}}=\frac{s}{s+\omega_{c}}
\end{aligned}
$$

Clearly, this is high-pass with $G_{o}=1$ and $\omega_{c}=\frac{1}{R C}$

High-pass filter circuits: simple RL

$$
V_{o}(s)=\frac{Z_{L}}{Z_{L}+Z_{R}} V_{i}(s)
$$

$$
T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\frac{Z_{L}}{Z_{L}+Z_{R}}=\frac{s L}{s L+R}=\frac{s}{s+\frac{R}{L}}=\frac{s}{s+\omega_{c}}
$$

Again, high-pass with $G_{o}=1$ but with $\omega_{c}=\frac{R}{L}$

High-pass filter circuits: inverting op amp

$$
\begin{aligned}
& T(s)=\frac{V_{o}(s)}{V_{i}(s)}=-\frac{Z_{2}}{Z_{1}}=-\frac{R_{2}}{R_{1}+\frac{1}{s C}}=\left(-\frac{R_{2}}{R_{1}}\right) \frac{s}{s+\frac{1}{R_{1} \mathrm{C}}}
\end{aligned}
$$

We see that this is also high-pass with $G_{o}=-\frac{R_{2}}{R_{1}}$ and $\omega_{c}=\frac{1}{R_{1} C}$
The same comments about the phase apply here: the -1 in the gain factor introduces an extra 180° (or -180°) of phase.

High-pass filter circuits: non-inverting op amp

Again, this is simple $R C$ highpass cascaded with a noninverting amp.

$$
V_{+}(s)=\frac{Z_{R}}{Z_{C}+Z_{R}}=\frac{s}{s+\frac{1}{R C}} \quad \text { simple } R C \text { high pass }
$$

$$
V_{o}(s)=\left(1+\frac{R_{2}}{R_{1}}\right) V_{+}(s) \quad \text { non-inverting amp }
$$

$$
T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{s}{s+\frac{1}{R C}}\right)
$$

High-pass with $G_{o}=\left(1+\frac{R_{2}}{R_{1}}\right)$ and $\omega_{c}=\frac{1}{R C}$

High-pass filter circuits: another RC

$$
\begin{aligned}
T(s)=\frac{V_{o}(s)}{V_{i}(s)} & =\frac{Z_{R 2}}{Z_{R 2}+Z_{R 1}+Z_{C}} \\
& =\frac{R_{2}}{R_{2}+R_{1}+\frac{1}{s C}} \\
& =\left(\frac{R_{2}}{R_{1}+R_{2}}\right) \frac{s}{s+\frac{1}{\left(R_{1}+R_{2}\right) C}} \\
& =G_{o} \cdot \frac{s}{s+\omega_{c}} \quad \text { High-pass }
\end{aligned}
$$

$$
G_{o}=\frac{R_{2}}{R_{1}+R_{2}} \text { Note the voltage divider. "Gain" }<1
$$

$$
\omega_{c}=\frac{1}{\left(R_{1}+R_{2}\right) C} \quad \text { The corner depends on the series combination. }
$$

Case study: inductors can be trouble

Cheap inductors can have a relatively large series resistance. This parasitic resistance can cause trouble in certain circumstances.

$$
T(s)=\frac{s}{s+\frac{R}{L}}=\frac{s}{s+\omega_{0}}
$$

As usual, zero at $s=0$, pole at $s=-\omega_{c}$.

$$
\begin{gathered}
T(s)=\frac{s L+R_{s}}{s L+R_{s}+R_{1}}=\frac{s+\frac{R_{s}}{L}}{s+\frac{R_{s}+R_{1}}{L}}=\frac{s+\omega_{Z}}{s+\omega_{P}} \\
\text { Pole and zero } \\
\text { are both shifted! }
\end{gathered}
$$

$$
\begin{aligned}
T(j \omega)=\frac{\omega_{Z}+j \omega}{\omega_{P}+j \omega} & |T|
\end{aligned}=\frac{\sqrt{\omega_{Z}^{2}+\omega^{2}}}{\sqrt{\omega_{P}^{2}+\omega^{2}}}
$$

Effect of inductor parasitic resistance on high-pass filter:
$L=0.027 \mathrm{H}, R_{1}=1 \mathrm{k} \Omega$, and $R_{s}=60 \Omega$.
The frequency responses for both magnitude and phase are quite different.

