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Solving circuits directly using Laplace
The Laplace method seems to be useful for solving the differential 
equations that arise with circuits that have capacitors and inductors and 
sources that vary with time (steps and sinusoids.)  The approach has 
been to: 

1. Analyze the circuit in the time domain using familiar circuit 
analysis techniques to arrive at a differential equation for the time-
domain quantity of interest (voltage or current). 

2. Perform a Laplace transform on the differential equation to arrive a 
frequency-domain form of the quantity of interest. 

3. Solve the frequency-domain algebra expression. 

4. Transform back to the time-domain. 

Might it possible to change the order of the steps? Could we transform 
the circuit into the frequency domain and then use circuit techniques to 
find the desired voltage or current?  Might this is approach be easier 
than solving differential equations? 

Not surprisingly, the answer to all three questions is “Yes!”
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Frequency domain impedances
In order to transform a circuit directly, we need frequency-domain 
descriptions of the all of the components in the circuit.  We already know 
how to transform the commonly used step and sinusoidal sources.  We need 
to consider resistors, inductors, and capacitors to see the form of the current-
voltage relationships in the frequency domain.  Apply the Laplace transform 
to the i-v equations directly.
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For the resistor, the frequency domain relationship is exactly the same 
as the the time domain.  (Ohm’s Law is not time-dependent, so this is 
not a surprise.) For the inductor and capacitor, the frequency domain 
relations are actually simpler.  All three components can be treated with 
a simple “Ohm’s-Law-like” current-voltage equation:

V (s) = Z ⋅ I (s)

where Z is known as the “impedance”, with units of ohms (Ω).

ZR = R
ZC =

1
sC

ZL = sL

ZC and ZL depend on frequency, but for a given frequency, they are 
constants.  They are complex constants (since s is complex), but the 
frequency domain relationships are exactly like those of the resistor: 
voltage is equal to a constant multiplied by the current.  This means that 
the circuit in the frequency domain can be solved using all of the 
methods that we learned for circuits with sources and resistors at the 
very beginning of EE 201.
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Of course this frequency-domain approach is very similar to the 
complex analysis used for AC circuits in EE 201.  In fact, AC analysis as 
introduced 201 is simply a special case of the Laplace approach. In our 
Laplace expressions, if we restrict the complex frequency to just 
imaginary values, s = jω, the two approaches become identical.

All of the familiar techniques learned in 201 apply in the frequency 
domain, as well: 

• equivalent resistances (now equivalent impedances) 

• voltage / current dividers * 

• source transformations 

• node voltages * 

• mesh currents 

• superposition
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Now, with the approach of transforming the circuit into the frequency 
domain using impedances, the Laplace procedure becomes: 

1. Transform the circuit.  Use the Laplace transform version of the 
sources and the other components become impedances.  

2. Solve the circuit using any (or all) of the standard circuit analysis 
techniques to arrive at the desired voltage or current, expressed in 
terms of the frequency-domain sources and impedances. 

3. Transform back to the time-domain.  (If needed.)

The following examples illustrate the method.
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Example 1
Find the Laplace (frequency domain) expression for vC in the RC circuit 
below.  The input is a step function, vi (t) = Vf ·u(t)

The frequency domain circuit 
is easily solved using a 
voltage divider.
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frequency domain.
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Example 2
The same RC circuit, but now with a sinusoidal source, vi = VA cos(ωt).

vi (t) = VA ⋅ cos (ωt)

ZC =
1
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ZR = R

Convert the circuit to the 
frequency domain.  It looks 
familiar.

Vi (s) = VA ⋅
s

s2 + ω2

The R and C impedances still 
form a voltage divider.
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Example 3
Find the Laplace (frequency domain) expression for vC  in the RLC circuit 
below.  The input is a step function, vi (t) = Vf ·u(t).
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This can still be handled as a 
voltage divider.
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Convert to the frequency domain. 

ZR = R
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The same RLC circuit as Example 3, but now with a sinusoidal source, 
vi = VA cos(ωt).

Example 4

vi (t) = VA ⋅ cos (ωt)
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Yep, it’s still a voltage divider.
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Let’s try an op-amp with a step-voltage 
input. Find the frequency-domain 
expression for the output, Vo(s).

Example 5
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–
+

ZR1

ZR2

ZC

Vi (s) Vo (s)

First, combine ZR2 and ZC to 
make the parallel equivalent.
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It is just a simple inverting amp!
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Example 6
Same op amp circuit, but now with a sinusoidal input.
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Convert to the frequency domain. 
Combine ZR2 and ZC as in the 
previous example.
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Vi (s) = VA ⋅
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s2 + ω2
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Once again, it is just an 
inverting amp.
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