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When we evaluate the performance of a circuit, there are many aspects 
to consider.  Two of the most important are: 

1. Step response. How does the output respond when the input 
changes abruptly, as in the case of a digital logic circuit?  In other 
words, what is the transient response to large change in input 
voltage or current? 

2. Frequency response. What is the the response at the output when 
the input is a sinusoid?  In particular, how does the sinusoidal 
output change when the frequency is varied? 

Both types of analysis were introduced in EE 201 — RC, RL, and RLC 
transients and sinusoidal steady-state analysis.  The mathematical 
approach in each case started with a consideration of the differential 
equations that characterized the circuits, but the two approaches 
seemed to diverge.  The transient analysis followed directly along the 
differential-equation route, but the AC analysis veered towards using 
complex numbers, with the circuit being transformed into a new version 
that was analyzed using complex math.

Laplace transforms
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Recall from 201

vC (t) = Vf − [Vf − Vi] exp (−σt) σ =
1
τ

=
1

RC

R

C
–

+
vC (t)vi (t)

+
–Vi

Vf

t = 0

dvC

dt
+

vC

RC
=

Vf

RC

at t = 0, vC = Vi

The step response of the capacitor voltage in a simple RC circuit.  The 
result is a exponential transient with an RC time constant.  The RL 
transient case had similar behavior.

(Go back the 201 notes, if you need to review.)
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R

C
–

+
vC (t)vi (t) = VAcosωt +

–

dvC

dt
+

vC

RC
=

VA

RC
cos ωt

vC (t) = Ae−σt + M cos (ωt + θ)

ṽC =
ZC

ZR + ZC
ṽi

ṽC = Mejθ

–

+
+
–

ZR

ZC ṽCṽi = VAej0∘

vC (t) = M exp (jωt + θ)

Also from 201
The sinusoidal response of the capacitor voltage in a simple RC circuit. 
In 201, we solved two ways: as a straight-forward differential equation 
and then by transforming the circuit and using impedances with complex 
analysis. With the complex approach, transient effects were ignored.

M =
VA

1 + (ωRC)2
θ = − arctan (ωRC)
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We saw a similar relationships for second-order RLC circuits.

= Vf − (Vf − Vi) [A1e−σ1t + A2e−σ2t]

B1,  B2, σ1, σ2, M, θ depend on 
Vm, R, L, C, ω, and initial conditions.

A1, A2, σ1, and σ2 depend on 
R, L, C, and initial conditions.

Overdamped → two 
decaying exponentials.

= B1e−σ1t + B2e−σ2t + M cos (ωt + θ)

Again, using sinusoidal steady-state 
analysis, the sinusoidal part of the 
capacitor voltage can be expressed as vC (t) = Mej(ωt + θ) → vC = Mejθ

R

C
–

+
vC (t)

+
–

L
vi (t)Vi

Vf

t = 0

R

C
–

+
vC (t)vi (t) = VAsinωt +

–
L



EE 230 Laplace – 5

Can these two approaches — the step-response using differential 
equations and the AC method using a circuit transformation and 
complex analysis —  be reconciled?  In both cases, we are looking atet 
same circuit — only the details of the source have changed. It seems 
that there might be a more unified approach to handling the two 
situations. Solving differential equations is tedious but does works in 
every case. The circuit transform approach offers simplicity, but can it 
be made more general?  The key the unification comes in considering 
the time dependence of the solutions in the two cases. In particular: 

For the steady-state sinusoidal problems, using the complex form, the 
solutions are also exponentials, but this time complex:

vC (t) ∝ exp (jωt) ω → angular frequency, units of (seconds)–1. 
(Or rad/s. Radians are dimensionless.)

σ → decay rate, units of (seconds)–1. 
(Or nepers/s.  Nepers are dimensionless.)

For step-function problems, the solutions were exponentials, 
characterized by a decay rate (or rates for the 2nd-order case):

vC (t) ∝ exp (−σt)
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We might consider combining these two exponentials into a single 
quantity, which we could call complex frequency:

s = σ + jω → est = eσtejωt

The complex frequency encompasses both transient and sinusoidal 
situations.  For pure step-function situations, ω = 0 (DC) and s = σ.  For 
sinusoidal steady-state situations, σ = 0 and s = jω. 

In fact, we witnessed this unified frequency notion in 201. In the 
underdamped RLC transient, the capacitor voltage oscillated for a time 
before settling to the final voltage — both σ and ω were needed in the 
solution.

s → complex frequency, units of s–1.

Complex frequency
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Recall

vC (t) = Vf − (Vf − Vi) e−σt [cos ωdt +
σ

ωd
sin ωdt]

vC (t) = Vf − (
Vf − Vi

2 ) (1 +
σ

ωd ) e−(σ − jωd)t + (1 −
σ

ωd ) e−(σ + jωd)t

underdamped → a decaying 
oscillation

+
– –

+

R

CVS(t)Vi

Vf

L
vC(t)

Using this new notion of complex frequency, we can re-write the 
underdamped response as:

From 201:
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The Laplace Transform
The idea of complex frequency leads inexorably to the Laplace 
transform which is one of a number of integral transforms that allow for 
easier solution of differential equations.  The idea is to transform a 
problem from one domain (or space) into a related domain, where, 
hopefully, the equations are easier to solve.  Applying this method to 
circuits, we will transform the differential equation from the time 
domain to the frequency domain and find a solution in that form.  Then 
we can transform back to the time domain to arrive at the final solution.  
You likely saw this method applied in your differential equations class. 

However, we will learn soon enough that transforming back from the 
frequency domain is not really necessary.  The frequency-domain 
representation presents useful information without the need to transform 
back to the time domain. 

Working in the frequency domain is a key skill for EEs.  Being able to 
see how a system behaves in both the time domain and the frequency 
domain leads to a much deeper understanding of a system and is 
essential for system design.
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The Laplace Transform
Given a function of time, f (t), we can transform it into a new, but related, 
function F(s).  

• exp(–st) is the kernel of the transform, where s = σ + jω is the complex 
frequency. 

• By integrating from 0 to infinity, we “integrate out the time”, leaving a 
function that depends only on s. 

• The two variables s and t are complementary.  If t is time, then s must 
have units of inverse time, i.e. a frequency, and the product s·t is then 
dimensionless. 

• This is the “one-sided” Laplace transform, since the integral starts at 
t = 0.  There is a two-sided Laplace transform, but the extra integration 
range doesn’t really add to the utility of the transformation.  In using the 
one-sided version, we assume that everything starts at t = 0. 

• The variable s is complex, and so F(s) must be complex function.  This 
has implications when we attempt to use F(s) later.

ℒ {f (t)} = ∫
∞

0
f (t) e−stdt = F (s)



EE 230 Laplace transform – 10

1. Multiply / divide by a constant m.  (The number m could be complex.)

2. Addition and subtraction.

Given functions f(t) and f1(t), having L.T.s  F(s) and F1(s)

ℒ{m ⋅ f (t)} = m ⋅ ℒ{f (t)} = m ⋅ F (s)

ℒ { f (t)
m } =

ℒ {f (t)}
m

=
F (s)

m

ℒ {f (t) ± f1 (t)} = F (s) ± F1 (s)

F (s) = ℒ{f (t)} F1 (s) = ℒ{f1 (t)}

Useful properties of Laplace Transforms

Here are a couple of obvious ones.  These relations are easily proved 
using the definition of at the Laplace transform. We will use these results 
constantly when applying Laplace transforms to circuits.
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Here are the two key relationships for Laplace transforms.  Without 
these, the Laplace method would not be very useful. 

3. Differentiation. f (0) is the initial condition of the function at t = 0. 

 

4. Integration: 

 

Higher order derivatives and integrals. 

 

ℒ { df (t)
dt } = sF (s) − f (0)

ℒ {∫
∞

0
f (t) dt} =

F (s)
s

ℒ { d2f (t)
dt2 } = s2F (s) − sf (0) −

df
dt

t=0

ℒ {∫
∞

0 ∫
t

0
f (x) dx} =

F (s)
s2
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Some other interesting properties. (These will be used more extensively 
in EE 324.) 

5. Changing time scale:  

Expanding the time scale compresses the frequency scale. 
Compressing the time scale expands the frequency scale. 

6. Time shift:  

7. Frequency shift:  

Note the mathematical symmetry of the time and frequency shift 
relationships. 

There are many other important properties of Laplace transforms, but we 
will leave the more advance details to EE 224, EE 324, and other general 
systems classes.  Here we focus on the essentials needed to understand 
how our basic electronic systems behave.

ℒ {f (at)} =
1
a

F ( s
a )

ℒ {f (t − a)} = e−as ⋅ F (s)

ℒ {eat ⋅ f (t)} = F (s − a)
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Example

F (s) = ℒ {f (t)} = ∫
∞

0
te−stdt

For a first example consider a linear ramp in time.  The function is zero 
for t < 0, and then ramps up with a slope of 1: .f (t) = t

Use integration by parts:

∫
∞

0
te−stdt = −

t
s

e−st
∞

0
+

1
s ∫

∞

0
e−stdt

= −
t
s

e−st
∞

0
−

1
s2

e−st
∞

0

= 0 +
1
s2

F (s) =
1
s2

If the slope is not 1, so that , then , by 

multiplicative property of LTs.

f (t) = m ⋅ t F (s) =
m
s2

f (t)

t
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Unit step function
When we studied transients in 201, we frequently 
used step-change sources, where the source value 
abruptly jumped from one level to another. However, 
we didn’t develop a mathematical formalism — it 
was just a jump between two values.

Now we should be more formal. The basic step function, u (t) is defined 
by an abrupt change from 0 to 1 at t = 0, making it a unit step function. 
Then an abrupt change in source voltage or current can be written as:

vs (t) = Vf ·u(t) is (t) = If ·u(t)

0 

1 

t = 0

u(t) 

0 t = 0

Vf

0 t = 0

If

The step could also go negative, in which case a the voltage would be 

.vs (t) = − Vf ⋅ u (t)
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In 201, we often used the situation where the source started at a non-zero 
level and stepped to another value.

vs(t) = Vi + ∆V ·u(t)

= Vf ·u(t) + [1 – u(t)] Vi

If the step occurs at a time to ≠ 0, the step function would be shifted in 
time, .u (t − to)

t = 0

Vf

∆V
Vi

The unity-step function can also “turn on” other functions so that they 
are zero for t < 0.  For example: 

 

is a function that is 0 for t < 0, and then become a cosine for t ≥ 0. 

Since we will be using one-sided Laplace transforms, which are defined 
from t starting at zero and extending to infinity, we implicitly assume 
that all source functions are multiplied by a unit step function, so that 
the functions are definitely zero for t < 0.

vs (t) = [VA cos ωt] ⋅ u (t)
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Transform of unit step, u(t)

F (s) = ℒ{u (t)} = ∫
∞

0
1 ⋅ e−stdt

∫
∞

0
e−stdt = −

e−st

s
∞

0

= 0 − (−
1
s )

F (s) =
1
s

ℒ {Va ⋅ u (t)} =
Va

s

Apparently, we will need the Laplace transform for the unit step.

The transform for a typical step voltage source would be:
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Decaying exponential

ℒ {e−σt} = ∫
∞

0
e−σte−stdt

= ∫
∞

0
e−(s + σ)tdt

= −
1

s + σ
e−(s + σ)t

∞

0

=
1

s + σ

f (t) = e−σt

ℒ {e+σt} =
1

s − σ

Another function that we will use frequently is the simple exponential.  
We include a decay constant σ.

The transform for a growing exponential is
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sinusoids
Recall from Euler:

ℒ {cos ωt} =
1
2 ∫

∞

0
(ejωt + e−jωt) e−stdt

=
1
2 ∫

∞

0
e−(s − jω)tdt +

1
2 ∫

∞

0
e−(s + jω)tdt

= −
1

2 (s − jω)
e−(s − jω)t

∞

0

−
1

2 (s + jω)
e−(s − jω)t

∞

0

=
1

2 (s − jω)
+

1
2 (s + jω)

cos ωt =
1
2 (ejωt + e−jωt)

ℒ {sin ωt} =
ω

s2 + ω2

=
s

s2 + ω2

The derivation for sine is similar.  The result is:
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impulse δ(t) 1

step u(t)

ramp t

exponential

sine

cosine

damped sine

damped cosine

f(t) F(s)

1
s
1
s2

1
s + σe−σt

ω
s2 + ω2

s
s2 + ω2

(s + σ)
(s + σ)2 + ω2

ω
(s + σ)2 + ω2

sin ωt

cos ωt

e−σt sin ωt

e−σt cos ωt

A few transforms

phasor ejωt 1
s − jω
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Analyzing a circuit in the frequency domain
Now we are ready to apply the Laplace method to solve a problem. We 
could start with a generic differential equation, like was done in the 
differential equations class from the math department. However, we 
may as well go directly to a circuit, since analyzing circuits in the time 
domain leads to differential equations. 

The method is straight-forward: 

1. Using usual analysis techniques, find the differential equation for the 
quantity of interest in the circuit. 

2. Use Laplace methods to transform the entire equation into the 
frequency domain. The differential equation in the time domain 
becomes an algebra problem in the frequency domain. 

3. Use basic algebra to find a frequency-domain expression for the 
Laplace transform of the quantity of interest. 

4. Transform back from the frequency domain to the time domain. 

Later, we will see that step 4 is optional — it is not always necessary to 
transform back.  We will not to do step 4 in the following examples.  
We will look the inverse transformation in the next set of notes.
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Example 1 
Find the frequency domain 
expression for the capacitor 
voltage in the RC circuit at right. 

The source is a unit step with Vi = 0 
for t < 0 and Vf = 10 V for t ≥ 0. 

R

C
–

+
vC (t)vi (t)

+
–Vi

Vf

t = 0

The differential equation has been derived previously, but we will repeat 
here, just to be complete in this first example. 

 

 

 

Take the the Laplace transform of both sides of the equation 

iR = iC
vi (t) − vC (t)

R
= C

dvC (t)
dt

dvC (t)
dt

+
vC (t)
RC

=
vi (t)
RC

ℒ { dvC (t)
dt

+
vC (t)
RC } = ℒ { vi (t)

RC }
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Use the addition/multiplication properties of the LT to break it down a bit. 

 

The three transforms are: 

 

 

 

Note that in this case, the initial condition is vc (0) = 0, so the derivative 
expression is simplified. Putting it all back together, 

ℒ { dvC (t)
dt

+
vC (t)
RC } = ℒ { vi (t)

RC }

ℒ { dvC (t)
dt } +

1
RC

ℒ {vC (t)} =
1

RC
ℒ {vi (t)}

ℒ {vC (t)} = VC (s)

ℒ { dvC (t)
dt } = sVC (s) − vC (0)

ℒ {vi (t)} = ℒ {Vf ⋅ u (t)} =
Vf

s

sVC (s) +
VC (s)
RC

=
Vf

sRC
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With a bit of simple algebra, the frequency domain form of the 
capacitor voltage is 

 

Of course, we don’t yet know the meaning of this function.  In principle 
we can transform it back to the time domain, and we will do that soon 
enough. 

More importantly, after a bit more practice, we will come realize that 
the frequency-domain form above tells us everything we need to know 
about the circuit’s behavior.  And arriving at the frequency-domain 
expression using the Laplace transform was quite easy.

sVC (s) +
VC (s)
RC

=
Vf

sRC

VC (s) =
1

s (s + 1
RC )

⋅
Vf

RC
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R

C
–

+
vC (t)vi (t) = VAcosωt +

–

dvC

dt
+

vC

RC
=

VA

RC
cos ωt

Example 2

Same circuit but with a 
sinusoid source.  Again, 
assume that vc (0) = 0.

sVC (s) +
VC (s)
RC

=
VA

RC
⋅

s
s2 + ω2

VC (s) =
1

(s2 + ω2) (s + 1
RC )

⋅
V

RC

We won’t go through all the steps here — you should do that on your 
own.  The steps are very similar to example 1.
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R

C
–

+
vC (t)

+
–

L
vi (t)Vi

Vf

t = 0

Example  3

RLC — a second-order 
system — with a step input. 

Again, the analysis is 
abbreviated — fill in the 
missing steps for yourself.

d2vC (t)
dt2

+
R
L

dvC (t)
dt

+
1

LC
vC (t) =

Vf

LC
u (t)

To keep it simple, use initial conditions, vC (0) = 0  

and iC (0) = 0 .[ dvC

dt t=0
= 0]

s2VC (s) +
R
L

sVC (s) +
1

LC
VC (s) =

Vf

sLC

VC (s) =
1

s (s2 + R
L s + 1

LC )
⋅

Vf

LC
Once the differential equation is in 
place, the Laplace stuff is so easy!
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Example 4

An RLC with a sine function 
source.  Use the same initial 
conditions as in the previous 
RLC example.

R

C
–

+
vC (t)vi (t) = VAsinωt +

–
L

d2vC (t)
dt2

+
R
L

dvC (t)
dt

+
1

LC
vC (t) = VA sin ωt

s2VC (s) +
R
L

sVC (s) +
1

LC
VC (s) =

VA

LC
⋅

ω
s2 + ω2

VC (s) =
ω

(s2 + R
L s + 1

LC ) (s2 + ω2)
⋅

Vf

LC
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Example 5

How about an op amp with a 
step input?  Again, for 
simplicity, use initial condition 
of Vi = 0, which translates to   

vC (0) = 0 [ vo(0) = 0 ].

–
+

C

R2

R1

vo (t)
vi (t)Vi

Vf

t = 0

vi (t)
R1

=
Vf ⋅ u (t)

R1
=

−vo (t)
R2

− C
dvo

dt

iR1 = iR2 + iC

Vf

sR1
= −

Vo (s)
R2

− CsVo (s)

Vo (s) = −
1

s (s + 1
R2C )

⋅
Vf

R1C
Note how similar this is to the 
result of Example 1.



EE 230 Laplace – 28

Example 6

One more.  Let’s do an 
op amp with a sinusoidal 
source.  Just for fun, use a 
complex exponential for 
the input sinusoid.

–
+

C

R2

R1

vo (t)
vi (t) = VAexp(jωt)

vi (t)
R1

=
VA ⋅ ejωt

R1
=

−vo (t)
R2

− C
dvo

dt

Vf

R1 (s − jω)
= −

Vo (s)
R2

− CsVo (s)

Vo (s) = −
1

(s + 1
R2C ) (s − jω)

⋅
Vf

R1C
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Units
In each of the examples, once the differential equation was transformed into the 
frequency domain, the math was quite easy.  That is the magic of Laplace 
transforms — they turn messy differential equations is simpler algebra equations. 
Again, you may well have seen this your diff. eq. math class. 

However, there is an important distinction that we should emphasize.  In a 
typical math class, the variables and equations have no units.  When s was 
introduced as complementary variable in the LT process, it did not have any 
specific physical significance — it was just a means to an end.  Transform a 
function of t (or x or z or whatever) into a function of s, do some manipulations, 
and then transform back to the original variable.  The “s” fades away. 

On the other hand, our circuits are physical, and the every quantity has units that 
are tied to the physical meaning.  So in transforming from time to frequency, the 
units for s must be complementary — s is the complex frequency and it must 
have units of inverse seconds (sec–1).  (Note the potential confusion if we use s 
for seconds as is typical in most situations.) 

Similarly, the transforms for voltage and current have defined units. In looking at 
the definition of the LT, it is apparent that voltage in the time domain transforms 
to a frequency-domain quantity with units of volt-seconds (V·sec.) A frequency-
domain current has units of amp-seconds (A·sec).  These are subtle points, but 
they are important.


