second-order active filters

Building up higher-order active filters from first-order filters is OK, but limiting, because we can never have $Q_{P}>0.5$ by using first-order building blocks. To get more flexibility we need slightly different approaches. Here we describe three types of second-order active filter circuits that can achieve higher Q_{P}.

Three examples

1. Two integrator-loop biquad (Kerwin-Huelsman-Newcomb). Uses three op-amps. Good for any type of filter. Use a fourth op-amp to adjust gain.
2. Delyiannis-Friend single amp biquad (SAB). Uses one op-amp. Works well for band-pass. Any value of Q_{P}.
3. Sallen-Key single amp biquad. Again, uses one op-amp. Works well for low-pass and high-pass. Any value of Q_{P}.

Two-integrator loop

Kerwin-Huelsman-Newcomb (KHN) biquad
Here is a crazy looking circuit. Let's analyze it to find the transfer function. As usual, tackle the problem piece by piece.

1. Start on the right. We note that the third op-amp is a simple integrator. In the Laplace domain:

$$
V_{3}(s)=-\frac{V_{2}(s)}{s R C}
$$

2. Same thing for the second op amp.

$$
V_{2}(s)=-\frac{V_{1}(s)}{s R C}
$$

So V_{3} is essential the second integral of V_{1}.

$$
V_{3}(s)=\frac{V_{1}(s)}{(s R C)^{2}}
$$

3. The first op amp is some sort of summing circuit. V_{2} and V_{3} are being fed back and combined with V_{i} in some fashion. We have seen circuits like this before. (It could have been a homework problem. It is straightforward - and tedious - to show
 that:

$$
\begin{aligned}
V_{1}(s) & =\left(\frac{1+\frac{R_{f}}{R_{3}}}{1+\frac{R_{i}}{R_{2}}}\right) V_{i}(s)+\left(\frac{1+\frac{R_{f}}{R_{3}}}{1+\frac{R_{2}}{R_{i}}}\right) V_{2}(s)-\left(\frac{R_{f}}{R_{3}}\right) V_{3}(s) \\
& =G_{i} V_{i}(s)+G_{2} V_{2}(s)-G_{3} V_{3}(s) \\
V_{1}(s) & =G_{i} V_{i}(s)-\frac{G_{2}}{s R C} V_{1}(s)-\frac{G_{3}}{(s R C)^{2}} V_{1}(s)
\end{aligned}
$$

$$
V_{1}(s)=G_{i} V_{i}(s)-\frac{G_{2}}{s R C} V_{1}(s)-\frac{G_{3}}{(s R C)^{2}} V_{1}(s)
$$

With a bit of re-arrangement, we can re-cast this in the form of a transfer function relating $V_{1}(s)$ to $V_{i}(s)$.

$$
T_{1}(s)=\frac{V_{1}(s)}{V_{i}(s)}=G_{i} \cdot \frac{s^{2}}{s^{2}+\left(\frac{G_{2}}{R C}\right) s+\frac{G_{3}}{(R C)^{2}}}
$$

Of course, this is a high-pass filter with $\omega_{o}{ }^{2}=G_{3} /(R C)^{2}, Q_{P}=\left(\omega_{o} R C\right) / G_{2}$, and $G_{o}=G_{i}$.

By choosing the $R C$ product in the integrators and the resistor ratios that determine the various gains, we can design for ω_{o} and Q_{P}. With all of the components, it would seem that there should be enough freedom that we could specify the gain, as well. However, the resistor ratios are a somewhat constrained, and we aren't able to choose all three parameters independently. Basically, you can choose two out of three. If a specific gain is needed, a non-inverting amp can be added the output to provide extra gain.

But there's more. Recall that:

$$
\begin{aligned}
V_{2}(s) & =-\frac{V_{1}(s)}{s R C} \\
& =-G_{i} \cdot \frac{\left(\frac{1}{R C}\right) s}{s^{2}+\left(\frac{G_{2}}{R C}\right) s+\frac{G_{3}}{(R C)^{2}}} V_{i}(s)
\end{aligned}
$$

Expressing this in the from of a transfer function:

$$
T_{2}(s)=\frac{V_{2}(s)}{V_{i}(s)}=-\frac{G_{i}}{G_{2}} \cdot \frac{\left(\frac{G_{2}}{R C}\right) s}{s^{2}+\left(\frac{G_{2}}{R C}\right) s+\frac{G_{3}}{(R C)^{2}}}
$$

We see that this is a high-pass filter with $\omega_{o}{ }^{2}=G_{3} /(R C)^{2}$ and $Q_{P}=\left(\omega_{o} R C\right) / G_{2}$, and $G_{o}=-G_{i} / G_{2}$.

There's even more where that came from.

$$
\begin{aligned}
V_{3}(s) & =-\frac{V_{2}(s)}{s R C} \\
& =G_{i} \cdot \frac{\frac{1}{(R C)^{2}}}{s^{2}+\left(\frac{G_{2}}{R C}\right) s+\frac{G_{3}}{(R C)^{2}}} V_{i}(s)
\end{aligned}
$$

Expressing this in the from of a transfer function:

$$
T_{3}(s)=\frac{V_{3}(s)}{V_{i}(s)}=\frac{G_{i}}{G_{3}} \cdot \frac{\frac{G_{3}}{(R C)^{2}}}{s^{2}+\left(\frac{G_{2}}{R C}\right) s+\frac{G_{3}}{(R C)^{2}}}
$$

The third output is a low-pass filter with $\omega_{o}{ }^{2}=G_{3} /(R C)^{2}$ and $Q_{P}=\left(\omega_{o} R C\right) / G_{2}$, and $G_{o}=G_{i} / G_{3}$.

It's pretty nifty - one circuit that can be used for all three primary types of second-order filters.

KHN summary

For all of the sections:

$$
\begin{array}{ll}
\omega_{o}^{2}=\frac{G_{3}}{(R C)^{2}} & Q_{P}=\frac{\omega_{o} R C}{G_{2}}=\frac{G_{3}}{G_{2}} \\
G_{i}=\left(\frac{1+\frac{R_{f}}{R_{3}}}{1+\frac{R_{i}}{R_{2}}}\right) & G_{2}=\left(\frac{1+\frac{R_{f}}{R_{3}}}{1+\frac{R_{2}}{R_{i}}}\right)
\end{array}
$$

For LP: $G_{o}=G_{i} / G_{3}$
For BP: $G_{o}=-G_{i} / G_{2}$
For HP: $G_{o}=G_{i}$
Note that G_{i} and G_{2} are not independent, $G_{2}=\left(R_{i} / R_{2}\right) \cdot G_{i}$. (Check it.) This means that for LP and HP, there is not enough flexibility in the components to choose ω_{o}, Q_{P}, and G_{o} completely independently. So typically, the basic KHN would be designed for ω_{o} and Q_{P}, and some value for G_{o} will come from that. If a specific gain is required, a fourth amp - inverting or non-inverting - can be added to adjust G_{o}.

KHN design example - LP

Design a KHN low-pass filter with corner frequency of 10 kHz and gain in the passband of 5 . The realized circuit should meet the specs within $\pm 5 \%$.

1. Since no Q_{P} was specified, presumably we can choose what we want. To keep it simple, choose $Q_{P}=0.707$, which is the maximally flat case and for which $\omega_{c}=\omega_{o}$.
2. Design for $\omega_{o}=2 \pi f_{o}=62.83 \mathrm{krad} / \mathrm{s}$.
3. $\omega_{o}=\frac{\sqrt{G_{3}}}{R C}$. To keep it simple, choose $G_{3}=1\left(R_{3}=R_{f}\right.$.) With a bit of calculator poking, we note that the combination of a $3.3-\mathrm{k} \Omega$ resistor and a $4.7-\mathrm{nF}$ capacitor gives $\omega_{o}=(R C)^{-1}=122.5 \mathrm{krad} / \mathrm{s} . \quad(-2.5 \%)$.
4. Since we chose $G_{3}=1$, then $Q_{P}=\frac{1}{G_{2}} \rightarrow G_{2}=\frac{1}{Q_{P}}=1.41$

KHN low-pass design (con't)

5. We have already chosen $R_{3}=R_{f}$, so then the G_{2} expression is

$$
G_{2}=\left(\frac{2}{1+\frac{R_{2}}{R_{i}}}\right) \rightarrow \frac{R_{2}}{R_{i}}=\frac{2}{G_{2}}-1=0.418
$$

This is a bit harder to find simple resistor ratios that are close. But a bit of trial-and-error shows that if $R_{2}=10 \mathrm{k} \Omega$ and $R_{i}=24.2 \mathrm{k} \Omega$, the ratio is 0.413 , which is about 1% off. R_{i} can be made with $22 \mathrm{k} \Omega$ in series with a $2.2 \mathrm{k} \Omega$.
6. Finally, with $G_{3}=1, G_{o}=G_{i}=\left(\frac{2}{1+\frac{R_{i}}{R_{2}}}\right)=0.59$. Since the requirement is for a gain of 5 in the passband, an extra amp with gain of $5 / 0.59=8.5$ must be added after the LP output.

Because of the relatively high frequencies in the LTspice simulation on the following page, the gain-bandwidth of the op-amps was increased 1 GHz so that GBW limitations did not affect the Bode plots.

KHN design example - HP

Design a KHN high-pass filter with corner frequency of 250 Hz and gain in the passband of 1. Design for $Q_{p}=0.6$. The realized circuit should meet the specs within $\pm 5 \%$.

1. Since $Q_{P} \neq 0.707$, then $\omega_{c} \neq \omega_{o}$, and we must use the messy equation to find the required value of ω_{o}. In the high-pass case
$\omega_{o}=\omega_{c} \sqrt{1-\frac{1}{2 Q_{P}^{2}}+\sqrt{1+\left(1-\frac{1}{2 Q_{P}^{2}}\right)^{2}}}$
With $Q_{P}=0.6$ and $\omega_{o}=0.827 \cdot \omega_{c}=1300 \mathrm{rad} / \mathrm{s}$ - this is the characteristic frequency that we will design for.
2. $\omega_{o}=G_{3} / R C$. To keep it simple, choose $G_{3}=1\left(R_{3}=R_{f .}\right)$ With a bit of calculator poking, we note that the combination of a $7.5-\mathrm{k} \Omega$ resistor and a $0.1-\mu \mathrm{F}$ capacitor gives $\omega_{o}=(R C)^{-1}=1333 \mathrm{rad} / \mathrm{s}-$ $+2.5 \%$ off. ($7.5-\mathrm{k} \Omega$ resistors are available. Or it can realized with a $6.8 \mathrm{k} \Omega$ and $680 \mathrm{k} \Omega$ in series.)

KHN high-pass design (con't)

3. Since we chose $G_{3}=1$, then $Q_{P}=\frac{1}{G_{2}} \rightarrow G_{2}=\frac{1}{Q_{P}}=1.67$
4. We have already chosen $R_{3}=R_{f}$, so then the G_{2} expression is

$$
G_{2}=\left(\frac{2}{1+\frac{R_{2}}{R_{i}}}\right) \rightarrow \frac{R_{2}}{R_{i}}=\frac{2}{G_{2}}-1=0.2
$$

Choose $R_{2}=10 \mathrm{k} \Omega$ and $R_{i}=2 \mathrm{k} \Omega$ (two $1-\mathrm{k} \Omega$ resistors in series).
5. Finally, for high-pass, $G_{o}=G_{i}=\left(\frac{1+\frac{R_{f}}{R_{3}}}{1+\frac{R_{i}}{R_{2}}}\right)$. These ratios are already specified, giving $G_{o}=0.333$. So to meet the pass-band gain requirement, we need an extra amp with gain of 3 - easily accomplished.

KHN design example - BP

Design a KHN band-pass filter with center frequency of 2400 Hz and bandwidth of 400 Hz . The gain of the signal at the center frequency should be 10 . The realized circuit should meet the specs within $\pm 5 \%$.

Note, because of the particular form for G_{o} for the KHN BP, it is possible to meet all design parameters with just the three amps - no extra amp is needed in order to adjust gain at the end. An extra amp can be added if desired, but is it not a requirement in order to set the correct gain as in the case of the LP and HP.

1. $\omega_{o}=2 \pi f_{o}=15.08 \mathrm{krad} / \mathrm{s}$.
2. $\omega_{o} / Q_{P}=\Delta \omega$ (bandwidth) $\rightarrow Q_{P}=f_{o} / \Delta f=2400 / 400=6$.
3. For the $\mathrm{BP}, G_{o}=-G_{i} / G_{2}=-R_{2} / R_{i}$. So to meet the gain requirement, set $R_{2}=10 R_{i}$. (Choose $10 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$.)

KHN band-pass design (con't)

4. $Q_{P}=\frac{G_{3}}{G_{2}}=\frac{\left(R_{f} / R_{3}\right)}{\left(\frac{1+R_{f} / R_{3}}{1+R_{2} / R_{i}}\right)}=\frac{1+R_{2} / R_{i}}{1+R_{3} / R_{f}}$
5. Since Q_{P} must be 6 and we've already chosen $R_{2} / R_{i}=10$, we can solve the above equation for $R_{3} / R_{f}=0.833$. $\left(R_{f} / R_{3}=1.2\right.$.) A combination of $R_{f}=12 \mathrm{k} \Omega$ (a fairly common value) and $R_{3}=10 \mathrm{k} \Omega$ works nicely.
6. Finally, $\omega_{o}=\sqrt{G_{3}} /(R C) \rightarrow R C=\sqrt{G_{3}} / \omega_{o}=\sqrt{1.2} /(15.08 \mathrm{krad} / \mathrm{s})$. A combination of $R=2.2 \mathrm{k} \Omega$ and $C=33 \mathrm{nF}$ gives $\omega_{o}=15.09 \mathrm{krad} / \mathrm{s}$ essentially on the mark.

Delyiannis-Friend

The Delyiannis-Friend configuration makes a nice single amp bandpass circuit. The three resistors allow for flexibility in choosing ω_{o}, Q_{p}, and G_{o}.

Calculate the transfer function. Write node-voltage equations at the inverting input (virtual ground) and the node labeled V_{x}.

$$
\begin{array}{ll}
s C_{1} V_{x}=\frac{-V_{o}}{R_{2}} & \frac{V_{i}-V_{x}}{R_{1}}=\frac{V_{x}}{R_{3}}+s C_{1} V_{x}+s C_{2}\left(V_{x}-V_{o}\right) \\
V_{x}=-\frac{V_{o}}{s R_{2} C_{1}} & V_{i}+s R_{1} C_{2} V_{o}=\left(1+\frac{R_{1}}{R_{3}}+s R_{1} C_{1}+s R_{1} C_{2}\right) V_{x}
\end{array}
$$

Substitute to eliminate V_{x}.

$$
V_{i}+s R_{1} C_{2} V_{o}=-\left(1+\frac{R_{1}}{R_{3}}+s R_{1} C_{1}+s R_{1} C_{2}\right) \frac{V_{o}}{s R_{2} C_{1}}
$$

Grind through the algebra to arrive at the standard band-pass form.

$$
\begin{aligned}
& V_{i}=-\left(s R_{1} C_{2}+\frac{1}{s R_{2} C_{1}}+\frac{R_{1}}{s R_{2} R_{3} C_{1}}+\frac{R_{1}}{R_{2}}+\frac{R_{1} C_{2}}{R_{2} C_{1}}\right) V_{o} \\
& \begin{aligned}
& T(s)=\frac{V_{o}}{V_{i}}=-\frac{1}{\left(s R_{1} C_{2}+\frac{1}{s R_{2} C_{1}}+\frac{R_{1}}{s R_{2} R_{3} C_{1}}+\frac{R_{1}}{R_{2}}+\frac{R_{1} C_{2}}{R_{2} C_{1}}\right)} \\
&=-\frac{\left(\frac{1}{R_{1} C_{2}}\right) s}{\left(s^{2}+\frac{1}{R_{1} R_{2} C_{1} C_{2}}+\frac{1}{R_{2} R_{3} C_{1} C_{2}}+\frac{s}{R_{2} C_{2}}+\frac{s}{R_{2} C_{1}}\right)} \\
& T(s)=-\frac{\left(\frac{1}{R_{1} C_{2}}\right) s}{s^{2}+\left(\frac{1}{R_{2} C_{2}}+\frac{1}{R_{2} C_{1}}\right) s+\left(\frac{1+\frac{R_{1}}{R_{3}}}{R_{1} R_{2} C_{1} C_{2}}\right)}
\end{aligned} \\
& \omega_{o}^{2}=\frac{1+\frac{R_{1}}{R_{3}}}{R_{1} R_{2} C_{1} C_{2}} \quad \frac{\omega_{o}}{Q_{P}}=\frac{1}{R_{2} C_{1}}+\frac{1}{R_{2} C_{2}} \quad G_{o} \frac{\omega_{o}}{Q_{p}}=\frac{1}{R_{1} C_{2}}
\end{aligned}
$$

The three transfer-function parameters can be expressed directly in terms of the circuit components.

$$
\begin{aligned}
& \omega_{o}^{2}=\frac{1+\frac{R_{1}}{R_{3}}}{R_{1} R_{2} C_{1} C_{2}} \quad Q_{P}=\frac{\omega_{o}}{\frac{1}{R_{2} C_{1}}+\frac{1}{R_{2} C_{2}}}=\frac{\omega_{o} R_{2} C_{2}}{1+\frac{C_{2}}{C_{1}}}=\frac{\sqrt{\frac{R_{2}}{R_{1}}+\frac{R_{2}}{R_{3}}}}{\sqrt{\frac{C_{1}}{C_{2}}}+\sqrt{\frac{C_{2}}{C_{1}}}} \\
& G_{o}=\frac{Q_{P}}{\omega_{o} R_{1} C_{2}}=\frac{\frac{R_{2}}{R_{1}}}{1+\frac{C_{2}}{C_{1}}}
\end{aligned}
$$

These equations are fine for analyzing a D-F circuit but are unwieldy for designing a circuit. Trying to adjust five circuit parameters to obtain specific values of ω_{o}, Q_{p}, and G_{o} will be inefficient, at best. To make the design process easier, we can impose a constraint up front. For the D-F filter, a commonly used constraint is to make the two capacitors equal, $C_{1}=C_{2}=C$. The above equations are simplified, and we can choose the resistors in a straight-forward manner.

$$
\omega_{o}^{2}=\frac{1+\frac{R_{1}}{R_{3}}}{R_{1} R_{2} C^{2}} \quad Q_{P}=\frac{1}{2} \omega_{o} R_{2} C \quad G_{o}=\frac{R_{2}}{2 R_{1}}
$$

A design example follows.

Example

Design a D-F bandpass filter with center frequency of 1000 Hz , bandwidth of 100 Hz , and band-center gain of 5 . The design should meet the specifications within 5%.

1. $\omega_{o}=2 \pi f_{o}=6280 \mathrm{rad} / \mathrm{s}$.
2. $\omega_{o} / Q_{P}=\Delta \omega$ (bandwidth) $\rightarrow Q_{P}=f_{o} / \Delta f=10$.
3. Choose $C_{1}=C_{2}=6.8 \mathrm{nF}$.
4. $Q_{P}=\frac{1}{2} \omega_{o} R_{2} C \rightarrow R_{2}=\frac{2 Q_{P}}{\omega_{o} C}=468 \mathrm{k} \Omega$
5. $G_{o}=\frac{R_{2}}{2 R_{1}} \rightarrow R_{1}=\frac{R_{2}}{2 G_{o}}=46.8 \mathrm{k} \Omega$
6. $\omega_{o}^{2}=\frac{1+\frac{R_{1}}{R_{3}}}{R_{1} R_{2} C^{2}} \rightarrow R_{3}=\frac{R_{1}}{\omega_{o}^{2} R_{1} R_{2} C^{2}-1}=1.20 \mathrm{k} \Omega$
7. Choosing standard values, we can build the D-F circuit with $R_{1}=47 \mathrm{k} \Omega, R_{2}=470 \mathrm{k} \Omega, R_{1}=1.2 \mathrm{k} \Omega$, and $C_{1}=C_{2}=6.8 \mathrm{nF}$.

Sallen-Key

Another single-amp bi-quad is the Sallen-Key circuit. Although it looks similar to a D-F filter, it is fundamentally different. The amp is configured in a non-inverting fashion - usually with unity gain. The general form of the circuit is shown below.

To find the transfer function, we start by noting that the unity-gain feedback means that

$$
V_{+}(s)=V_{-}(s)=V_{o}(s)
$$

Writing node equations:

$$
\begin{aligned}
& \frac{V_{i}-V_{x}}{Z_{1}}=\frac{V_{x}-V_{o}}{Z_{2}}+\frac{V_{x}-V_{o}}{Z_{4}} \quad \text { (Effectively, } Z_{2} \text { and } Z_{4} \text { are in parallel.) } \\
& \frac{V_{x}-V_{o}}{Z_{2}}=\frac{V_{o}}{Z_{3}}
\end{aligned}
$$

Re-arranging the equations:

$$
\begin{aligned}
& V_{i}=\left(1+\frac{Z_{1}}{Z_{2}}+\frac{Z_{1}}{Z_{4}}\right) V_{x}-\left(\frac{Z_{1}}{Z_{2}}+\frac{Z_{1}}{Z_{4}}\right) V_{o} \\
& V_{x}=\left(1+\frac{Z_{2}}{Z_{3}}\right) V_{o}
\end{aligned}
$$

Substitute the second into the first to eliminate V_{x}

$$
V_{i}=\left(1+\frac{Z_{1}}{Z_{2}}+\frac{Z_{1}}{Z_{4}}\right)\left(1+\frac{Z_{2}}{Z_{3}}\right) V_{o}-\left(\frac{Z_{1}}{Z_{2}}+\frac{Z_{1}}{Z_{4}}\right) V_{o}
$$

Multiply everything out

$$
V_{i}=\left(1+\frac{Z_{1}}{Z_{2}}+\frac{Z_{1}}{Z_{4}}+\frac{Z_{1}}{Z_{3}}+\frac{Z_{2}}{Z_{3}}+\frac{Z_{1}}{Z_{4}} \frac{Z_{2}}{Z_{3}}-\frac{Z_{1}}{Z_{2}}-\frac{Z_{1}}{Z_{4}}\right) V_{o}
$$

And wrangle it into a transfer function

$$
T(s)=\frac{V_{o}}{V_{i}}=\frac{1}{1+\frac{Z_{1}}{Z_{3}}+\frac{Z_{2}}{Z_{3}}+\frac{Z_{1}}{Z_{4}} \frac{Z_{2}}{Z_{3}}}
$$

$$
T(s)=\frac{1}{1+\frac{Z_{1}}{Z_{3}}+\frac{Z_{2}}{Z_{3}}+\frac{Z_{1}}{Z_{4}} \frac{Z_{2}}{Z_{3}}}
$$

It doesn't mean much until specific impedances are inserted. Consider the circuit shown at right.

$$
\begin{aligned}
& Z_{1}=R_{1} \quad Z_{2}=R_{2} \quad Z_{3}=\frac{1}{s C_{3}} \quad Z_{4}=\frac{1}{s C_{4}} \\
& T(s)=\frac{1}{1+s R_{1} C_{3}+s R_{2} C_{3}+s^{2} R_{1} R_{2} C_{3} C_{4}}
\end{aligned}
$$

$$
=\frac{\frac{1}{R_{1} R_{2} C_{3} C_{4}}}{s^{2}+s\left(\frac{1}{R_{1} C_{4}}+\frac{1}{R_{2} C_{4}}\right)+\frac{1}{R_{1} R_{2} C_{3} C_{4}}}
$$

Make it high-pass by swapping resistors and capacitors.

Clearly low-pass with: $\quad \omega_{o}^{2}=\frac{1}{R_{1} R_{2} C_{3} C_{4}} \quad \frac{\omega_{o}}{Q_{P}}=\frac{1}{R_{1} C_{4}}+\frac{1}{R_{2} C_{4}}$

Sallen-Key: design example

Design a Sallen-Key second-order low-pass filter that is maximally flat with corner frequency at 1000 Hz .
Maximally flat means that the filter should have $Q_{P}=0.707(1 / \sqrt{2})$. Recall that this condition corresponds to the special case in which $\omega_{c}=\omega_{o}$. So we need a low-pass filter with $f_{o}=1000 \mathrm{~Hz}\left(\omega_{o}=6283 \mathrm{rad} / \mathrm{s}\right)$.

Using the Sallen-Key equations.

$$
\begin{array}{ll}
\omega_{o}^{2}=\frac{1}{R_{1} R_{2} C_{3} C_{4}} & \omega_{o}=\frac{1}{\sqrt{R_{1} R_{2} C_{3} C_{4}}} \\
\frac{\omega_{o}}{Q_{P}}=\frac{1}{R_{1} C_{4}}+\frac{1}{R_{2} C_{4}} & Q_{P}=\frac{\frac{1}{\sqrt{R_{1} R_{2} C_{3} C_{4}}}}{\frac{1}{R_{1} C_{4}}+\frac{1}{R_{2} C_{4}}}
\end{array}
$$

Those are a little messy. Let's impose a constraint in an effort to simplify things: Let's choose to have $R_{1}=R_{2}=R$.

Then the equations for ω_{o} and Q_{P} become:

$$
\omega_{o}=\frac{1}{R \sqrt{C_{3} C_{4}}} \quad Q_{P}=\frac{1}{2} \sqrt{\frac{C_{4}}{C_{3}}}
$$

We can meet the quality factor requirement by choosing $C_{4}=2 C_{3}$.

$$
Q_{P}=\frac{\sqrt{2}}{2}=0.707
$$

Then: $\omega_{o}=\frac{1}{\sqrt{2} R C_{3}}$.
With a bit of noodling around around with a calculator, we see that the combination of $R=6.8 \mathrm{k} \Omega$ and $C_{3}=16.5 \mathrm{nF}$ works. Then $C_{4}=33 \mathrm{nF}(\mathrm{a}$ standard size) and C_{3} could be made with two 33 nF caps in series.

